Introdução Flashcards
O que é probabilidade?
É a medida da informação ou crença sobre a ocorrência de um evento.
- Estudo da aleatoriedade e incerteza
- Quantificação do conhecimento sobre um evento
- Clássica P = m/n
- Definição frequencialista = limite da frequência relativa
- Definição axiomática
- Definição subjetiva - palpite pessoal
Tipos de experimentos
- Determinístico - resultado sempre o mesmo
2. Aleatório - resultado diferente na mesma condição de teste
Espaço amostral
Conjunto de todos os resultados possíveis, letra S
O que é evento?
Subconjunto do espaço amostral
Eventos elementares
ll
Tipos de operações com eventos
- União A U B - quando ocorre algum dos eventos, A ou B
- Interseção - ocorre somente na ocorrência dos dois eventos. A
- Evento Complementar - não ocorrência do evento esperado.
- Mutuamente Excludente - quando um acontece o outro não pode acontecer.
Teoremas de probabilidade
Mostra como calcular a probabilidade de operações entre eventos
Fórmulas definição axiomática
P(E) >= 0
P(E) = 1
P(EUF) = P(E) + P(F) dado que E e F são mutuamente excludentes
Statisticians have an agreed convention about what constitutes ‘unlikely’.
Statisticians have an agreed convention about what constitutes ‘unlikely’. They say that an event is unlikely if it occurs less than 5% of the time. In general, the null hypothesis says that ‘nothing is happening’ and the alternative says that ‘something is happening’.
One of the most important scientific notions is that absence of evidence is not evidence of absence.
xxx
What is the Null Hypotheses?
The null hypothesis says ‘nothing is happening’. For instance, when we are comparing two sample means, the null hypothesis is that the means of the two populations are the same. Of course, the two sample means are not identical, because everything varies. Again, when working with a graph of y against x in a regression study, the null hypothesis is that the slope of the relationship is zero (i.e. y is not a function of x, or y is independent of x). The essential point is that the null hypothesis is falsifiable. We reject the null hypothesis when our data show that the null hypothesis is sufficiently unlikely.
What is p values?
a p value is an estimate of the probability that a value of the test statistic, or a value more extreme than this, could have occurred by chance when the null hypothesis is true.
Here we encounter a much-misunderstood topic. The p value is not the probability that the null hypothesis is true, although you will often hear people saying this. In fact, p values are calculated on the assumption that the null hypothesis is true. It is correct to say that p values have to do with the plausibility of the null hypothesis, but in a rather subtle way.
What are the key statistical assumptions?
- random sampling
- constant variance
- normal errors
- independent errors
- additive effects
What issues will increase the likelihood that you analyse your data the right way
the principle of parsimony
the power of a statistical test
controls
spotting pseudoreplication and knowing what to do about it
the difference between experimental and observational data (non-orthogonality)
How Many Replicates?
The usual answer is ‘as many as you can afford’. An alternative answer is 30. A very useful rule of thumb is this: a sample of 30 or more is a big sample, but a sample of less than 30 is a small sample.