Intro, Beta-Binomial, Dirichlet-Multinomial Flashcards
When is a set of data exchangable?
x1, . . . , xn are exchangeable,
meaning that the distribution p(x1, . . . , xn) is invariant to permutation of the
indices
Give the posterior formula
Posterior ∝ Likelihood * Prior
π(θ|x) ∝ product(i=1 to n) fθ(xi) x π(θ)
What is a conjugate prior?
prior and posterior are in the same family of distributions
Give the posterior of a Beta-Binomial model
π(p|k) ∝ p^(k+α−1) * (1 − p)^(n−k+β−1) ∼ Be(k + α, n − k + β)
Give the posterior mean of a Beta-Binomial model
(k + α) / (n + α + β)
Give the posterior variance of the Beta-Binomial model
(k + α)*(β + n − k) / (n + α + β)^2 * (α + β + n + 1)
Give the formula for a predictive posterior distribution
p(xn+1|x1, . . . , xn) = intgeral fθ(xn+1) * π(θ|x1, . . . , xn)dθ
In large samples, what does the mean of the Beta-Binomial model approximately equal?
k / n
In large samples, what does the variance of the Beta-Binomial model approximately equal?
k/(n^2) * (1- k/n)
What is the posterior distribution of the Dirichlet-Multinomial model?
π(θ1, . . . , θm|y1,…,ym) ∼ Dirichlet (y1 + α1, . . . , ym + αm)
Posterior mean of θi DM-model
(yi + αi) / sum(i=1 to m) (yi + αi)