Integration, integrals, MCT & DCT Flashcards
Definition of an integral:
Given f: (Omega, F,mu) -> Rbar where f is measurable.
Integral of f w.r.t. measure mu:
Integral(f)dmu
Integral w.r.t Dirac measure:
mu = Sx0 is a dirac measure.
Sx0(A) = {1, if x0 element of A & 0 otherwise
Integral(f)dSx0 = f(x0)
~if xi is in set A: if yes, Sxi(A)=1, if no Sxi(A) = 0
General rule of integrating w.r.t. dirac measure:
If mu = a1Sx1 + a2Sx2+ …
where ai element of [0,infinity) & xi element of omega:
mu(A) = sum(for i)ai*Sxi(A)
Integral(f)dmu = sum(for i)f(xi)
Integral w.r.t. lebesgue-measure:
f: (R,B(R),lambda)-> Rbar
Integral(f)dlamba = Integral(from -infinity to infinity) (f(x))dx
Integral w.r.t. Lebesgue-Stieltjies measure:
If function F: Real->Real is
increasing (a ≤ b => F(a) ≤ F(b) ) &
right continuous (lim(x->a^+)F(x) = F(a)
musubscripF( (a,b)) = musubscripF([a,b]) = musubscripF((a,b]) = F(b)- F(a)
If X: (Omega,F,Real) -> Real &
F(X) = P(X ≤ x), what is X’s distribution?
The Lebesgue-Stieltjies measure, musubscriptF(.).
Integral w.r.t. pushed-measure:
If G: (Omega,F,Real) -> (S, L, muG^-1) & G is measurable.
(thus B element of L,G^-1(B) element of F because G is measurable)
muG^-1(B) = mu(G^-1(B))
(Push-measure = mu-measure of pullback)
muG^-1 is a measure on (S,L)
If X: (Omega,F,Real) -> Real &
F(X) = P(X ≤ x), what is X?
A random variable
True or False:
i) If a function G is measurable
<=> G is continuous?
ii) If a function G is continuous => G is measurable?
iii) If a function G is measurable => G is continuous?
i) False
ii) True
iii)False
General rule of integrating a simple function:
Given f: (Omega,F,mu) ->(Rbar, B(Rbar) and assuming f is measurable.
If f = sum(for i)ai*Isubscript(Ai)
where ai element of Real &
Ai element of F, then
Integral(f)dmu = sum(for i)ai*mu(Ai)
Integral(Isubscript(A))dmu = mu(A)
Definition of expectation:
Suppose X: (Omega,F,P) -> (Rbar,B(Rbar)) is measurable (thus X is measurable)
then
E[X] = Integral(X)dP
Do integrals have to exist?
No
Properties of integrating simple functions:
If f & g are simple functions , then
1) Integral(f)dmu doesn’t depend on the simple interpretation of f.
2) Integral(Isubscript(A))dmu = mu(A) for A element of F
3) Linearity:
If f,g ≥ 0 & a,b ≥ 0, then
Integral(af + bg)dmu = aIntegral(f)dmu +bIntegral(g)dmu
4)Monotonicity:
If f,g ≥ 0 & f ≤ g, then
Integral(f)dmu ≤ Integral(g)dmu
What do we call measurable function whose integrals exist?
Integrable functions
When is a function f: Omega -> Real
simple?
If it only takes a finite number of different values.
If f: (Omega, F,mu) -> Clo Real, what is:
i) sF ?
ii) sF^+ ?
iii) mF ?
iv) mF^+ ?
i) sF : set of simple functions
ii) sF^+ : set of simple function ≥ 0
iii) mF : set of measurable functions
iv) mF^+ :set of measurable function ≥ 0
If f: (Omega, F,mu) -> Rbar, what is:
i) sF ?
ii) sF^+ ?
iii) mF ?
iv) mF^+ ?
i) sF : set of simple functions
ii) sF^+ : set of simple function ≥ 0
iii) mF : set of measurable functions
iv) mF^+ :set of measurable function ≥ 0
Integration for non-negative measurable functions, mF^+:
Given f: (Omega,F,mu) -> Rbar is measurable & f ≥ 0 then
Integral(f)dmu = sup{Integral(T)dmu:
T ≤ f & T element of sF^+}
Integration steps:
Given f: (Omega, F,mu)->(Rbar,B(Rbar)) is measurable
1) If f is simple, i.e.,
f = sumofi(aiIsubscriptAi)
then
Integral(f)dmu = sumofi(aimu(Ai))
2) If f an element of mF^+ & f ≥ 0
then
Integral(f)dmu = sup{Integral(T)dmu:
T ≤ f & T element of sF^+}
Integration for non-negative simple functions, sF^+:
If f simple,f = sumofi(aiIsubscriptAi), & f ≥ 0
then
Integral(f)dmu = sumofi(aimu(Ai))
Facts about if f element of mF^+:
1) Integral(f)dmu always exists
~can be infinity
2) Integral(f)dmu ≥ 0
3) There exists Tn element of sF^+ s.t.:
(i) Tn is increasing (T1 ≤ T2 ≤ …)
(ii)Tn -> T as n -> infinity
(pointwise: lim(n to infinity)Tn(w) = f(w) , for all w element of Omega
(iii) Tn ≤ f for all n
then
Integral(f)dmu = lim(n to infinity)Integral(Tn)dmu
Monotone convergence theorem:
Suppose fn: (Omega,F,mu) -> Rbar is measurable for all n element of N & f ≥0.
Assume that: lim n to infinity(fn) = f & f1 ≤ f2 ≤ …
(thus fn upwards arrow f)
then
lim n to infinity (Integral(fn)dmu)) = Integral(f)dmu
MCT steps
Given fn(x) determine lim n to infinity Integral(fn)dmu
1) Find f(x) = lim n to infinity (fn(x))
2) Check if fn(x) is increasing as a sequence:
fn(x) ≤ fn+1(x) for all n
3) Use MCT results:
lim n to infinity (Integral(fn(x))dmu)) = Integral(f(x))dmu
Integrating general functions:
Given f: (Omega,F,mu) -> Rbar is measurable
& recalling:
i) f^+ = max(x,0) ; f^- = -min(x,0)
thus f^+,f^- element of mF^+
ii) f = f^+ + f^-
what is Integral(f)dmu & when if f intergrable?
Integral(f)dmu = Integral(f^+)dmu + Integral(f^-)dmu
&
f is integrable if Integral(f)dmu exists & finite