Integration Flashcards
What does proper integration notation look like?
integral = ∫ (y) dx
If in the form Number(x)^(power), how do you integrate?
E.g. ∫ 5x^4 dx
- Add one to the power
- Divide by the new power
- Add constant C
E.g. ∫ 5x^4 dx = x^5 + C
If in the form Number(linear bracket)^(power), how do you integrate?
E.g. ∫ (2x - 1)^2 dx
i actually don’t remember BUT
you can expand this and integrate with normal rule
If in the form Number(bracket)^(power), how do you integrate?
E.g. ∫ (6x)(3x^2 - 1)^4 dx
- Add one to the power
- Divide by the new power
- Add constant C
E.g.∫ (6x)(3x^2-1)^4 dx = (3x^2 - 1)^5/5 + C
If in the form Number(e)^(power•x), how do you integrate?
E.g. ∫ 5e^7x dx
- Divide by the derivate of power
- Add constant C
E.g. ∫ 5e^7x dx = (5e^7x)/7 + C
If in the form Number(a)^(power), how do you integrate?
E.g. ∫ 5•4^7x dx
- Divide by the derivate of power
- Divide by ln(a)
- Add constant C
E.g. ∫ 5•4^7x dx = (5•4^7x)/(7ln(4)) + C
If in the form 1/x, how do you integrate?
E.g. ∫ 1/x dx
- ln|x|
- Add constant C
E.g. ∫ 1/x dx = ln|x| + C
note absolute values when doing this
When an integration is in a fraction, what do you do?
- Whether it can be simplified into an easier form
E.g. ∫ x^3+4x^2/x dx = ∫ x^2+4x dx - Whether you can apply log rules
- Finally apply ∫ f’(x)/f(x) dx rule
If in the form (bracket)/(bracket), how do you integrate?
E.g. ∫ 7x/(9x^2 + 5) dx
- Derive the bottom function
- Place this derivation above the bottom function
- Multiply with necessary fraction
- Add constant C
E.g. ∫ 7x/(9x^2 + 5) dx = 7/18 ln|9x^2 + 5| +C
note absolute values when doing this
If in the form cosf(x), how do you integrate?
E.g. ∫ cos(5x) dx
- Divide by f’(x)
- Change cos → sin
- Add constant C
E.g. E.g. ∫ cos(5x) dx = 1/5 sin(5x) + C
If in the form sinf(x), how do you integrate?
E.g. ∫ sin(7x) dx
- Divide by f’(x)
- Change ±sin → ∓cos
- Add constant C
E.g. E.g. ∫ sin(7x) dx = -1/7 cos(7x) + C
If in the form sec^2f(x), how do you integrate?
E.g. ∫ sec^2(3x) dx
- Divide by f’(x)
- Change sec^2 → tan
- Add constant C
E.g. ∫ sec^2(3x) dx = 1/3 tan(3x) + C
Definite integrals are (?), which are found by…
Numbers (NOT area)
- Integrate formula
- Place higher x value into integrated function
- Place lower x value into integrated function
- Subtract higher x value into lower x value
Area can be found by…
- Draw a graph
- Find x intercepts between these functions
- Integrate the functions with absolute values
The 3 cases for areas are…
- All positive (over x-axis)
- All negative (under x-axis)
- Half and half (some over some under x-axes)