INBR 7 - Multidicipline Self Assesment Examination Flashcards
1.Ciri klinis penyakit BROWN-SEQUARD meliputi hal di bawah ini, KECUALI
A. Hilangnya rasa nyeri kontralateral dan sensasi suhu mulai satu atau dua segmen tulang di bawah lesi
B. Hilangnya propriosepsi secara ipsilateral dan sensasi getar di bawah level benjolan
C. Sindroma HORNER secara ipsilateral jika lesi di servical
D. Hilangnya sensasi peraba kasar secara ipsilateral di bawah level lesi
E. Hilangnya keringat secara ipsilateral di bawah level lesi
D. (DeMyer, p. 137; Greenberg, p. 700; Youmans, pp. 272, 439 7 , 4872) .
- Apa yang ditunjukkan pada fotomikrograf di bawah ini ?
A. Sel tegak (palisading) di sekeliling daerah nekrosis pada pasien dengan glioblastoma.
B. Perubahan spongiform pada pasien dengan penyakit prion
C. Homer-Wright Rossete pada laki-laki usia 3 tahun dengan Meduloblastoma
D. Infark akut pada pasien dengan epilepsi mioklonik dengan serat-serat merah yang rusak (MERRF)
E. Nekrosis fibrinoid pada pasien dengan Leukoensepalopati hemoragik akut.
A.
Note the “picket fence” arrangement (pseudopalisading) of the nuclei surrounding a region of necrosis in this photomicrograph, which depicts a glioblastoma (Ellison, pp. 628-63 1).
- Uji laboratorium manakah yang paling peka bagi deteksi neuro-sistiserkosis (NCC)?
A. Hitung eosinopil periferal
B. hitung sel darah putih serum lengkap
C. Stool untuk ova dan parasit
D. Enzyme-linked immunosorbent assay (ELISA)
E. Electroimmunotrasfer blot (EITB)
E.
Complete white blood cell count, peripheral eosinophil level, and serum anticysticercal antibody levels should be obtained in all patients suspected of having NCC. Patients requiring ventriculostomy placement should have cerebrospinal fluid (CSF) analyzed for eosinophil and anticysticercal antibody levels. Stool testing for ova and parasites is helpful in patients with simultaneous intestinal tapeworm infection but is insensitive and nonspecific for T. solium species and is found in less than 33% of cases. Several laboratory methods have been developed to detect host antibodies against circulating cysticercal antigens. From the many tests performed, current data indicate that enzyme-linked immunosorbent assay (ELISA) and electroimmunotransfer blot (EITB) tests are the most effective. Studies comparing these diagnostic modalities have shown that the EITB assay is more sensitive overall than ELISA, especially when serum is being tested. Both techniques are more sensitive in cases with multiple cysts than in cases with solitary or confined lesions. Additionally, no global difference among cases was found with parasites located in different compartments (ventricles, subarachnoid space, parenchyma) of the central nervous system (Greenberg, pp. 236-238; Proano-Narvaez et a l . , p. 2 118).
- Degenerasi gabungan subakut dini
E (DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Sringomielia
F
(DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Tabes Dorsalis
D
(DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Poliomielitis
A (DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Amiotropik lateral sklerosis
C
(DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Paraplegia spastis familial
B
(DeMyer, p. 135; Brazis, pp. 85-95; Merritt, pp. 136-137 , 186, 7 10- 7 13 , 7 15-717) .
- Tumor berikut manakah yang memiliki gambaran histopatologi sebagaimana lesi di bawah ini ?
- Ependimoma sel bening
- Neurositoma Central
- Tumor Neuroepitelial disembrioplastis
- Meningioma fibrous
A.
The differential diagnosis of oligodendroglia! tumors includes clear cell ependymoma, central neurocytoma, and dysembryoplastic neuroepithelial tumor. All of these entities exhibit the presence of neoplastic cells with a uniform round nucleus and clear cytoplasm. A rare differential diagnosis of oligodendroglioma is clear cell meningioma (not fibrous meningioma), which can be differentiated from oligodendroglioma by abundant diastase-sensitive PAS positivity and immunoreactivity for El\1A. Note the prominent calcification, “chicken wire” capillaries (prominent branching) , “fried egg” cells with round monomorphic nuclei, and perinuclear halos arranged in a back-to-back fashion i n this photomicrograph depicting an oligodendroglioma (Ell ison, pp. 641-644; WHO, p . 59) .
- Lapisan dinding abdominal manakah yang paling baik dijahit (daya regang paling kuat) selama penempatan pirau ventrikuloperitoneal?
A. Colles fascia
B. Cruveilhier’s fascia
C. Buck’s fascia
D. Scarpa’s fascia
E. Camper’s fascia
D.
The anterior abdominal wall consists of the epidermis, superficial layer of superficial fascia (of Camper), the deep layer of superficial fascia (of Scarpa) , the deep fascia (investing fascia of musculature ) , the external and internal oblique muscles, the transverse abdominis muscle, transversalis fascia, loose extraperitoneal connective tissue, and peritoneum. Camper’s fascia is predominately an adiposelayer that contains most of the fat of the subdermis. It continues over the pubis as the superficial layer (of Cruveilhier) of the superficial perineal fascia, crosses the inguinal ligament to merge with the superficial fascia of the thigh, and continues over the chest as the superficial layer of superficial thoracic fascia. Scarpa’s fascia is a fibrous layer that will best hold sutures (highesttensile strength) . It continues over the • pubis as the deep layer of superficial perineal fascia (of Calles) and passes into the upper thigh, where it attaches to - the fascia lata. The deep fascia is the investing fascia of the musculature, aponeuroses, and large neurovascular struc- . tures and is not easily separated from the underlying epimysium of muscle. It extends into the penis as Buck’s fascia, continues over the spermatic cord as the external spermatic fascia, and passes over the pubis and perineal musculature as the deep perineal fascia of Gallaudet (April , p. 173).
- Simaklah gambar berikut, apa Diagnosisnya
A. Filum lemak dengan tethered cord
B. Ependimoma Miksopapilaris
C. Saluran sinus dermal
D. Hematoma epidural
E. Tumor dermoid
A.
Note the cord tethering and fatty filum on this sagittal MRI (Ramsey, pp. 104-106) .
- Manakah pernyataan yang benar mengenai lesi yang ditunjukkan pada angiogram di bawah ini ?
A. Risiko tahunan pendarahan adalah sekitar 3%
B. Berasosiasi dengan bruit kranial dan gagal jantung kongestif selama periode neonatal
C. Hilangnya gen penekan tumor pada kromosom 22
D. Lesi ini biasanya ditemukan pada parensima otak normal
E. Mencerminkan adanya varian anatomis ekstrim dari pasokan darah arteri kortikal
D.
This angiogram depicts the classic “caput medusae” pattern of a venous angioma, which is an extreme anatomic variant of medullary (white matter) venous drainage. The precise etiology of this lesion remains unclear, although some authors have proposed that it results from arrested development of parts of the venous vasculature at a time when normal arterial development is nearly complete. This results in the retention of primitive venous channels that typically empty into a single large draining vein (Osborn, pp. 294-295) .
- Struktur manakah di bawah ini yang terhubung dengan stria medularis talamus ?
A. Nucleus basal dan nuklei septal
B. Nuklei septal dan nuklei habenular
C. Nuklei habenular dan korteks okipital
D. Nuklei septal dan nuklei talamik depan
E. Kelenjar pineal dan anterior commissure
B.
The stria medullaris thalami contains projections that originate in the septal nuclei, anterior thalamic nuclei, and hypothalamus (preoptic region) and terminate in the habenular nuclei. The habenular nuclei then project to the raphe nuclei of the midbrain via the fasciculus retroflexus. In this manner, the stria medullaris thalami act as a relay point for limbic system information that is transmitted to the midbrain (Carpenter, p. 252; Martin , p. 4 73).
- Sel retina manakah yang berperan mekanisme untuk mediator respons berlawanan dalam kelompok selsel fotoreseptor di sekitarnya, yang telah digunakan untuk menguatkan kontras antar obyek?
A. Sel Fleksiform
B. Amakrin
C. Sel-sel horisontal
D. Ganglion
E. Sel-sel bipolar
C.
Visual information flows vertically from photoreceptor cells (outer nuclear layer) to bipolar cells (inner nuclear layer) to ganglion cells (ganglion cell layer) as well as laterally via horizontal cells (outer plexiform layer) and amacrine cells (inner plexiform layer) . Light produces opposite effects on the rate of bipolar cell firing depending on whether it stimulates the center or surrounding part of the cell’s receptive field . Additionally, a lateral network of horizontal cells that directly interconnect neighboring groups of photoreceptor cells helps mediate this antagonist property. Hence, horizontal cells pro,•ide a mechanism for mediating opposite responses in adjacent photoreceptor cells, which is used to enhance luminance contrast. The precise role of amacrine cells remains unclear, although some amacrine cells function like horizontal cells. They mediate antagonistic inputs between bipolar cells and ganglion cells in the inner plexiform layer. Other amacrine cells have been implicated in shaping the complex receptive field properties of various types of ganglion cells, such as M-type cells that process orientation information ( Pritchard , pp. 292-302; Kande l , p . 5 15).
- Defisit neurologi manakah yang disebabkan oleh rusaknya daerah EXNER?
A. Alexia
B. Aphasia
C. Agraphia
D. Anosmia
E. Apatis
C.
Exner’s area lies superior to Broca’s area, in Brodmann’s area 8, and if damaged may result in pure agraphia without aphasia (Brazis, pp. 515- 516) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Vestibula
F
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Koklea
H
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Kanalis semisirkularis posterior
E
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Kanalis semisirkularis lateral
A
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Akuaduk vestibular
D
hese three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Saraf Fasial
G
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Kanalis semisirkularis superior
B
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
Jodohkanlah struktur-struktur di bawah ini dengan huruf jawaban yang tepat pada CT scan aksial di bawah ini dari tulang Temporal Petrosus kanan
- Duktus endolimpatis
I
These three axial CT scans (Figures 8 . 1 7-8.24 Q a, b, c) illustrate critical portions of the petrous temporal bone and progress sequentially in a superior-inferior direction. In these figures, A represents the lateral semicircular canal, B the superior semicircular canal, C the internal auditory canal, D the vestibular aqueduct, E the posterior semicircular canal, F the vestibule, G the facial nerve, H the cochlea, and I the endolymphatic sac. Notice the labyrinthine and anterior tympanic portions of the facial nerve, separated by the geniculate ganglion, in figure B . Figure C depicts the horizontal segment of the facial nerve and the vestibular aqueduct joining the endolymphatic sac at the posterior aspect of the petrous temporal bone (Som, pp. 1319 - 1325) .
- Katup manakah diantara di bawah ini yang merupakan katup pengatur aliran?
A. Katup Orbis-Sigma
B. Katup delta medical PS
C. Katup horisontal-vertikal kordis
D. Katup terprogram Goldman Hakim
E. Katup Holter-Haussner
A.
Some of the valves currently used in clinical practice include the static (Holter-Hausner valve, Denver shunt, Codman Uni-Shunt) and programmable (Codman Medos, Sophy valve) differential pressure valves, flow-regulated valves (Orbis Sigma), and gravity-actuated valves (Cordis horizontal-vertical valve). The PS Medical Delta valve consists of an antisiphoning device just distal to a differential pressure valve. More recently Codman has introduced the Hakim programmable valve with a Siphon-Guard valve, while Medtronic has introduced the Strata valve, a programmable valve with variable pressure settings that can be coupled with their Delta valve antisiphoning device. The valves described above all use different approaches to control flow through the valve system and limit overshunting. Differential pressure valves open when the pressure at the inlet is higher than that the outlet by a preselected amount. Programmable differential pressure valves act in a similar fashion except that the surgeon can change the opening pressure with an external device, which often obviates the need for surgical shunt revision. Flow-regulated valves use a three-stage resistance mechanism to keep the flow rate through the valve constant. Gravity-actuated valves attempt to decrease siphoning by increasing opening pressure with the assistance of gravity when a patient sits or stands. Cordis horizontal-vertical valves are gravity-actuated valves that have traditionally been used with lumboperitoneal shunts (Youmans, pp. 33 76-3379; Albright, pp. 79-80; Wi lkins, pp. 3647-3651; American Society of Pediatric Neu rosurgeons, p p . 506-508; Committee on Education i n Neurological Surgery, pp. 137-138) .
- Simaklah di bawah ini. Apa Diagnosisnya?
A. Porensepali
B. Displasia kortikal
C. Skizensepali bibir terbuka (open lip)
D. Kiste araknoid
E. Skizensepali bibir terbuka
C
The process of celltilar migration typically occurs between the second and fifth gestational months . Faulty cellular migration can result in heterotopias, callosal agenesis, lissencephaly, pachygyria/polymicrog\Tia, and openor closed-lip schizencephaly. Note the prominent cleft (open-lip) that is lined entirely by gray matter on this sagittal MRI. Porencephalic clefts are predominately lined by gliotic white matter (Osborne DN, pp. 5 2 - 55 ) .
- Kelainan ini diyakini disebabkan oleh gangguan tahap embriologis yang mana?
A. Neurulasi primer
B. Neurulasi sekunder
C. Disjungsi
D. Migrasi sel
E. Mielinasi
D
The process of celltilar migration typically occurs between the second and fifth gestational months . Faulty cellular migration can result in heterotopias, callosal agenesis, lissencephaly, pachygyria/polymicrog\Tia, and openor closed-lip schizencephaly. Note the prominent cleft (open-lip) that is lined entirely by gray matter on this sagittal MRI. Porencephalic clefts are predominately lined by gliotic white matter (Osborne DN, pp. 5 2 - 55 ) .
- Semua hal di bawah ini berasal dari sebuah prekursor yang sama, KECUALI
A. ACTH
B. Hormon perangsang melanosit
C. Lipotropin Beta
D. Endorpin Beta
E. Leusin-enkepalin
E.
Proopiomelanocortin (PO.MC) gives rise to betalipotropin and ACTH. The sequences of beta-endorphin and melanocyte-stimulating hormone are contained in beta-lipotropin ( Kandel, p. 487).
- Ny. X, 62 tahun menjalani reseksi transpenoidal tanpa komplikasi atas makroadronema pituitaris dan sedang mengalami pemulihan di UPI. Pasca-bedah, dia merasa semakin merasa haus, mual, output urine naik (>300 ml/3 jam), hipernatremia (149 mEq/L) dan osmolaritas serum sebesar 323 mEq/L. Pada titik ini, perawatan optimal untuk pasien ini seharusnya mencakup…
A. Fludrokortison asetat
B. Urea
C. Desmopressin astetat (DDAVP) oral
D. Vasopresin arginin (aqueous Pitressin) secara intravena
E. Pitressin pada minyak tonik dari suspensi secara intramuscular
D.
This patient has developed diabetes insipidus (DI). Criteria frequently used to make the diagnosis include: urine osmolarity 50 to 150 mOsm/L, specific gravity 1.001 to 1 .005, urine output :2 250 to 300 cc/hr for 3 consecutive hours, and progressively increasing Na• levels on serial lab draws. This patient should receive aqueous vasopressin (Pitressin) (IVP/IM/SQ), as the lipid-soluble form is poorly absorbed compared to the aqueous form. This patient would likely not tolerate oral DDA VP due to her nausea, and a n asogastric tube is generally contraindicated after a transsphenoidal operation. Fludrocortisone acetate acts directly on the renal tubules to increase sodium absorption. This medication, along with urea, would be more applicable for patients with cerebral salt wasting or SIADH. Complications with fludrocortisone acetate include pulmonary edema, hypokalemia, and hypertension (Greenberg, p p . 20-23; Committee on Education i n Neurological Surgery, p . 99) .
- Apa yang ditunjukan pada EEG di bawah ini
A. Kejang-kejang absen
B. Left temporal lobe spike-and-wave discharge
C. Irama alpha
D. Irama tetap
E. K kompleks
C.
This EEG depicts normal posterior dominant rhythm (“alpha rhythm”) in a healthy adult man, maximal in the posterior head regions when the eyes are closed ( Rowa n , pp. 2 5 - 26).
- Ny. X, 54 tahun siuman setelah pembedahan kliping aneurisma arteri optalamik kanan elektif dengan mata kanan mengalami kebutaan total dan tanpa defisit neurologis lainnya. Angiogram serebral mengungkapkan menyatunya origin arteri optalamik ke dalam konstruksi klip. Temuan-temuan apa lagi yang kemungkinan ada pada angiogram tersebut?
A. Oklusi arteri karotid dalam kanan dengan menyamping ke belakang atau ke depan kolateral-kolateral komunikasi depan.
B. Vasospasma materi karotid dalam
C. Pengisian kolateral yang buruk pada globe kanan dari arteri maksilaris dan arteri fasial
D. Aliran kolateral arteri paringeal yang tidak cukup naik ke sebelah globe kanan
E. Jawaban A, B, C dan D semuanya benar
C.
A number of extracranial-to-intracranial anastomoses exist that may potentially provide collateral blood flow to the orbit and preserve vision after occlusion of the internal carotid or ophthalmic arteries. This collateral flow is mainly supplied by branches of the external carotid artery, including the internal maxillary (most important) and facial arteries, via their extensive ethmoid, ophthalmic, and cavernous carotid collaterals. Although this collateral filling is not always evident on angiography, this patient’s angiogram is more likely to show poor collateral flow to the globe from the ma.’Cillary or facial arteries, considering her symptomatology. The ascending pharyngeal artery does not usually provide collateral blood supply to the globe, while vasospasm would be highly unlikely in this setting. There should be other accompanying neurologic deficits if there 1vas complete occlusion of the right internal carotid artery with inadequate collateral feeding of that hemisphere (Osborn D N , p. 397 ) .
- Tn. X, gemuk, 28 tahun dibawa dengan riwayat sakit kepala dan diplopia selama dua bulan terakhir. Ternyata pasien mengalami lesi sebagaimana yang ditunjukkan pada fotomikrograf di bawah ini. Langkah perawatan apakah yang selanjutnya perlu dilakukan setelah reseksi bedah atas benjolan ini?
A. Terapi radiasi seluruh kepala
B. Radiosurgeri
C. Kemoterapi
D. Observasi dan MRI serial
E. Radioterapi sinar proton
D
One of the hallmarks of pilocytic astrocytomas is their relatively indolent growth rate with low mitotic acti\•ity . .Management typically includes gross total resection, if possible, followed by radiation therapy for recurrence. In some cases, invasion of the brainstem and/or cranial nervesprecludes gross total resection. Macroscopic features common to these tumors include the formation of a cyst with a solid mural nodule. Tumors without cyst wall enhancement are typically adequately treated with mural nodule excision alone, while tumors with a thickened, enhancing cyst wall are best managed with gross total excision. Microscopically, these tumors show a biphasic pattern consisting of bipolar, highly fibrillated (or piloid) cells with Rosenthal fibers and a loose-knit cystic component associated with granular bodies or protein droplets. The arrow depicts Rosenthal fibers, which are ubiquitin a
Tn. X, gemuk, 28 tahun dibawa dengan riwayat sakit kepala dan diplopia selama dua bulan terakhir. Ternyata pasien mengalami lesi sebagaimana yang ditunjukkan pada fotomikrograf di bawah ini. Langkah perawatan apakah yang selanjutnya perlu dilakukan setelah reseksi bedah atas benjolan ini?
- Apakah yang dijelaskan oleh tanda panah pada fotomikrograf tersebut?
A. Telangiestasia kapilaris
B. Gemitosit
C. Serat Rosenthal
D. Pembuluh darah normal
E. Granula melanin
C
One of the hallmarks of pilocytic astrocytomas is their relatively indolent growth rate with low mitotic acti\•ity . .Management typically includes gross total resection, if possible, followed by radiation therapy for recurrence. In some cases, invasion of the brainstem and/or cranial nervesprecludes gross total resection. Macroscopic features common to these tumors include the formation of a cyst with a solid mural nodule. Tumors without cyst wall enhancement are typically adequately treated with mural nodule excision alone, while tumors with a thickened, enhancing cyst wall are best managed with gross total excision. Microscopically, these tumors show a biphasic pattern consisting of bipolar, highly fibrillated (or piloid) cells with Rosenthal fibers and a loose-knit cystic component associated with granular bodies or protein droplets. The arrow depicts Rosenthal fibers, which are ubiquitin a
- Seorang bayi mampu memindahkan benda dari tangan ke tangan, menopang berat badannya, mengangkat kepalanya dari meja sebelum ditarik, dan menolehkan kepalanya ke arah sumber suara. Berapa taksiran umur bayi ini?
A. 2 bulan
B. 4 bulan
C. 6 bulan
D. 8 bulan
E. 10 bulan
C.
A 6-month-old infant is able to transfer objects from hand to hand, support most of his weight, lift his head off the table prior to being pulled up, turn his head to voice, and reach for objects ( Rudolph, p. 15).
- Semua refleks di bawah ini pada umumnya akan menghilang pada umur 4 sampai dengan 6 bulan, KECUALI
A. Menghisap
B. Mengepalkan tangan
C. Leher menegak
D. Suspensi ventral (Landau)
E. Duduk/merayap
D.
The suck reflex can be elicited in infants below 4 months of age and consists of bursts of upward tongue pressure and buccinator contraction when the examiner places a clean finger or pacifier into the infants mouth. The tonic neck reflex (typically disappears by 6 months) involves turning the head of a supine infant to one side. The opposite arm should extend 90 degrees from the trunk and the opposite leg should extend downward (“fencing position”). Placing a finger in an infant’s hand or under the toes can elicit the palmar grasp or plantar reflex, respectively. The palmar grasp reflex usually disappears by 6 months, while the plantar reflex is often present until 10 months of age . The stepping/ placing reflex is produced when the baby is held upright and the dorsal edge of the foot is allowed to brush against an object such as a bed or table. Infants less than 6 weeks of age should flex the knee and lift the foot. The ventral suspension (Landau) reflex results in extension of the head, trunk, and hips and knee flexion when an infant is supported on the examiner’s hand in a prone position. This reflex does not usually disappear until the age of 2 years. The Moro reflex occurs when the baby is placed in the supine position and the examiner lifts the baby’s head by placing his or her hand under it. Sudden release of the head a few centimeters toward the bed should elicit a complete Moro response in infants less than 3 to 4 months of age . It consists of abduction of the arms at the shoulder, extension of the forearms at the elbow, and extension of the fingers, followed by arm adduction at the shoulders. Additional reflexes include the crossed adductor (disappears by 7 months), parachute, and neck righting (disappears by 2 years) reflexes (Rudolph, p . 15).
- Pemutusan bidang pandangan paling awal manakah yang dialami pasien dengan aneurisma arteri optalamik?
A. Kuadrantanopsia temporal bawah monokular
B. Kuadrantanopsia temporal atas monokular
C. Nasal kuadran anopsia superior monokular
D. Kuadrantanopsia nasal bawah binokular
E. Hemianopsia temporal binokular.
C
Extensive removal of the anterior clinoid process and optic strut (roof of the optic canal), as well as sectioning of the falciform ligament and distal dural ring is often required for successful clipping of large ophthalmic segment CHAPTER 8 Multidisciplinary Self-Assessment Answers 26.7 aneurysms. Attempts to clip large and giant paraclinoid/ ophthalmic artery aneurysms with broad necks without this degree of exposure may place the ophthalmic and internal carotid arteries in jeopardy of clip-induced stenosis/ocqh.Ision. Ophthalmic segment aneurysms typically arise beneath the lateral aspect of the optic nerve, which initially results in compression of temporal fibers and an ipsilateral monocular superior nasal quadrantanopsia. With aneurysmal enlargement, the optic nerve is deflected further medially and superiorly against the rigid falciform ligament, which causes superior fiber compression and a monocular inferior nasal field cut (Greenberg, p. 783; Wilkins, pp. 2291-2299; Samson, pp. 41- 53) .
- Struktur manakah diantara struktur-struktur di bawah ini yang biasanya dilubangi atau disayat selama paparan bedah aneurisma arteri optalamik?
- Ligamen falsiform
- Cincin dural jauh
- Prosesus klinoid anterior
- Strut optik
E
Extensive removal of the anterior clinoid process and optic strut (roof of the optic canal), as well as sectioning of the falciform ligament and distal dural ring is often required for successful clipping of large ophthalmic segment CHAPTER 8 Multidisciplinary Self-Assessment Answers 26.7 aneurysms. Attempts to clip large and giant paraclinoid/ ophthalmic artery aneurysms with broad necks without this degree of exposure may place the ophthalmic and internal carotid arteries in jeopardy of clip-induced stenosis/ocqh.Ision. Ophthalmic segment aneurysms typically arise beneath the lateral aspect of the optic nerve, which initially results in compression of temporal fibers and an ipsilateral monocular superior nasal quadrantanopsia. With aneurysmal enlargement, the optic nerve is deflected further medially and superiorly against the rigid falciform ligament, which causes superior fiber compression and a monocular inferior nasal field cut (Greenberg, p. 783; Wilkins, pp. 2291-2299; Samson, pp. 41- 53) .
- Tn X, tidak kidal, 42 tahun dibawa ke UGD dalam keadaan kejang. Hasil pemeriksaan CT dan MRI-nya menunjukkan adanya lesi frontal kanan batas tegas tapi dengan penyengatan yang heterogen dengan pengapuran pada beberapa bagian dan edema di sekelilingnya yang mengisyaratkan adanya Oligodendroglioma. Semua pernyataan mengenai tumor di bawah ini adalah benar, KECUALI
A. Protein asam fibrilaris glial polipeptida (GFAP) tidak diekspresikan oleh oligodendrosit.
B. Merupakan sekitar 5% dari semua neoplasma intra-kranial
C. Memastikan unsur oligodendrogial pada Potong Beku biasanya oleh penampilan “telur goreng” dari halo perinuklir-nya.
D. Semakin tinggi kadar anaplasia-nya,, maka akan semakin pendek umur ketahanan hidupnya
E. Ada suatu asosiasi kuat antara respons kepada kemoterapi PCV (prokarbazin, CCNU dan Vinkristin) dan hilangnya alelik pada 1p/19q dalam Oligodendroglioma anaplastik
C.
Identification of the oligodendroglia! component on permanent section is usually aided by the classic “fried egg” appearance of the perinuclear halo. This develops as a consequence of the fixation process; it is not evident on smear or frozen examination and may be absent in rapidly fixed tissue and in paraffin sections made from frozen material (Ellison , pp. 641-645; WHO, pp. 56-6 1) .
- Diantara struktur-struktur di bawah ini, struktur manakah yang mengandung neuron ordo kedua dari saluran spinoserebelar?
A. Nukleus Clarke
B. Grasilis/kutanus nukleus
C. Nukleus kuneatus aksesoris
D. Olive bawah
E. Baik A dan C
E.
The spinocerebellar tracts convey unconscious proprioception from Golgi tendon organs, muscle spindles, and joint receptors in the periphery to the CNS. Dorsal spinocerebellar fibers (C8-L2) enter the medial aspect of the dorsal roots and synapse in the dorsal nucleus of Clarke. Second-order neurons in Clarke’s nucleus then project to the vermis and paramedian lobule of the cerebellum via the inferior cerebellar peduncle, where they terminate as mossy fibers. Above the level of C8, Ia and lb afferents enter the fasciculus cuneatus and synapse in the accessory cuneate nucleus of the medulla (the equivalent of Clarke’s nucleus of the spinal cord). Second-order neurons then enter the cerebellum (cuneocerebellar fibers) via the inferior cerebellar peduncle before synapsing in the cerebellum. The ventral spinocerebellar tract is a crossed tract that originates in Rexed laminae V to VII in the lower lumbar and coccygeal levels. This tract then decussates a second time in the pons before entering the cerebellum as mossy fibers via the superior cerebellar peduncle (Carpenter, pp. 90-94).
- Di manakah representasi kortikal dari visi macular?
A. Kutub (poles) okcipital
B. Lemniskus Lateral
C. Jungsi temporoperieto-okipital
D. Prekuneus
E. Tepi atas dari calcarine salcus
A.
The cortical representation for macular retinal vision is located in the occipital poles. The primary visual cortex (area 1 7 ) is located along the upper and lower banks of the calcarine sulcus. Layer IV of the primary visual cortex is particularly prominent and is known as the “band of Gennari. “ The occipital poles often receive collateral blood flow from the middle cerebral arteries, which is thought to account for macular sparing with field cuts that originate from cortical infarctions secondary to posterior cereb
- Yn. X, 42 tahun menjalani prosedur neuroradiologis intervensional terapeutik. Apa yang ditunjukan oleh angiogram di bawah ini
A. Pecahnya aneurismal intra-prosedural
B. Perfusi arteri serebral tengah yang buruk
C. Arteri tentorial yang membesar dan memasok Malformasi arterial-Venus pontin lateral
D. Fistula arteri-vena dural
E. Fistula karotid-kavernus Tipe II
C.
The superior olivary nuclei receive the ventral acoustic striae and contain third-order auditory neurons that subsequently project to the contralateral lateral lemniscus. The superior olives are the initial sites of binaural convergence within the auditory pathway ( Kandel, pp. 606-608) .
- Apa yang ditunjukkan oleh EKG di bawah ini
A. Infarksi miokardial
B. Hiperkalemia
C. Torsades des pointes
D. Toksisitas digoksin
E. Atrial flutter
A.
The angiogram depicts a right posterior carotid wall aneurysm as well as extravasation of contrast dye from the aneurysm in a patient about to be treated with GDC embolization (mi
Seorang laki-laki usia 16 tahun dengan hasil MRI sebagaimana ditunjukkan di bawah ini, dirujuk ke kantor anda. Hasil pemeriksaan laboratorium pasien mengungkapkan bahwa dia menderita hipotirodisme, kekurangan kortisol dan kadar prolaktin sebesar 69. Keluarganya mengatakan bahwa mereka mencatat adanya berbagai perubahan perilaku dan baru-baru ini mengalami kenaikan berat badan. Mata kirinya tidak bisa melihat dan lapang pandangan temporal mata kanannya terputus.
- Diagnosis manakah yang paling mungkin?
A. Makroadenoma pituitaris
B. Tumor metastatis yang menyerang kelenjar pituitaris belakang
C. Kraniofaringioma
D. Sinusitis sphenoid
E. Mukosel invasif dari sinus sphenoid
A .
Note the prominent ST-segment elevation i n leads V1 through V6 on this EGG, depicting an anterior wall myocardial infarction. In general, ST-segment and T-wave changes appear over the first minutes to hours of an infarction, and Q waves appear over hours to days. An evolving myocardial infarction may first manifest with peaked T waves followed by ST segment elevation and T-wave inversion. Eventually Q waves may appear. In a large anterior wall infarction, these changes are most apparent in leads V1 through V6, while in an inferior infarction, these changes often occur in leads II, III, and aVF. Of note, if a patient’s T waves are chronically inverted, the peaking may make them appear normal-a process referred to as pseudonormalization. T waves are the least reliable of ST- and T-\‘ave segment abnormalities because many• noncardiac events may influence them (i.e., elevated W). Dying myocardial cells release their enzymes into the bloodstream, and the increased concentration should be confirmed in the peripheral _ blood ( Fishman, pp. 9 - 24; Marino, pp. 301-313 ) .
Seorang laki-laki usia 16 tahun dengan hasil MRI sebagaimana ditunjukkan di bawah ini, dirujuk ke kantor anda. Hasil pemeriksaan laboratorium pasien mengungkapkan bahwa dia menderita hipotirodisme, kekurangan kortisol dan kadar prolaktin sebesar 69. Keluarganya mengatakan bahwa mereka mencatat adanya berbagai perubahan perilaku dan baru-baru ini mengalami kenaikan berat badan. Mata kirinya tidak bisa melihat dan lapang pandangan temporal mata kanannya terputus.
- Kadar prolaktinnya yang meningkat paling mungkin disebabkan oleh?
A. Efek Hook
B. Efek Stalk
C. Efek Avengaard
D. Sekresi tumor
E. Nodula paru-paru yang mengeluarkan prolaktin
C
The clinical history and 1UU are most consistent with a cystic craniopharyngioma. The modestly elevated prolactin level is likely the result of the “stalk effect,” whereby injury of the hypothalamus or pituitary stalk (i.e., from large tumors) results in modest ele,•ations of prolactin from reduced prolactin inhibitory factor levels (dopamine) . As a general rule, prolactin levels > 150 ng/mL are rarely secondary to a stalk effect, whereas le,•els
Seorang laki-laki usia 16 tahun dengan hasil MRI sebagaimana ditunjukkan di bawah ini, dirujuk ke kantor anda. Hasil pemeriksaan laboratorium pasien mengungkapkan bahwa dia menderita hipotirodisme, kekurangan kortisol dan kadar prolaktin sebesar 69. Keluarganya mengatakan bahwa mereka mencatat adanya berbagai perubahan perilaku dan baru-baru ini mengalami kenaikan berat badan. Mata kirinya tidak bisa melihat dan lapang pandangan temporal mata kanannya terputus. 46. Semua hal di bawah ini biasanya berasosiasi dengan sindroma BEHCET’S, KECUALI
A. Uveitis
B. Borok pada alat kelamin
C. Stomatis aptus
D. Artritis
E. Naiknya enzim pengubah angiotensin serum
B
The clinical history and 1UU are most consistent with a cystic craniopharyngioma. The modestly elevated prolactin level is likely the result of the “stalk effect,” whereby injury of the hypothalamus or pituitary stalk (i.e., from large tumors) results in modest ele,•ations of prolactin from reduced prolactin inhibitory factor levels (dopamine) . As a general rule, prolactin levels > 150 ng/mL are rarely secondary to a stalk effect, whereas le,•els
- Semua hal di bawah ini biasanya berasosiasi dengan sindroma BEHCET’S, KECUALI
A. Uveitis
B. Borok pada alat kelamin
C. Stomatis aptus
D. Artritis
E. Naiknya enzim pengubah angiotensin serum
E. Sarcoidosis, not Beh9et’s syndrome, is associated with elevated levels of angiotensin-converting enzyme ( Merritt, pp. 12 1 - 122).
- Fasilitasi pasca olah raga
A. Miastenia Gravis
B. Sindroma LAMBERT-EATON
C. Polimiositis
D. Sindroma saluran Carpal
E. miotonia
F. Bukan salah satu antara A s/d E
B ( Merritt, pp. 613, 7 1 1 , 723-724, 7 2 7-728, 766; Greenberg, pp. 72-75, 78-79) .
- Respons motorik menurun
A. Miastenia Gravis
B. Sindroma LAMBERT-EATON
C. Polimiositis
D. Sindroma saluran Carpal
E. miotonia
F. Bukan salah satu antara A s/d E
A
( Merritt, pp. 613, 7 1 1 , 723-724, 7 2 7-728, 766; Greenberg, pp. 72-75, 78-79) .
- Respons motorik menurun
A. Miastenia Gravis
B. Sindroma LAMBERT-EATON
C. Polimiositis
D. Sindroma saluran Carpal
E. miotonia
F. Bukan salah satu antara A s/d E
E
( Merritt, pp. 613, 7 1 1 , 723-724, 7 2 7-728, 766; Greenberg, pp. 72-75, 78-79) .
- Unit motorik miopatis, fibrilasi, pseudomiotnis
A. Miastenia Gravis
B. Sindroma LAMBERT-EATON
C. Polimiositis
D. Sindroma saluran Carpal
E. miotonia
F. Bukan salah satu antara A s/d E
C
( Merritt, pp. 613, 7 1 1 , 723-724, 7 2 7-728, 766; Greenberg, pp. 72-75, 78-79) .
- Latensi sensori > motorik
A. Miastenia Gravis
B. Sindroma LAMBERT-EATON
C. Polimiositis
D. Sindroma saluran Carpal
E. miotonia
F. Bukan salah satu antara A s/d E
D
( Merritt, pp. 613, 7 1 1 , 723-724, 7 2 7-728, 766; Greenberg, pp. 72-75, 78-79) .
- Anak laki-laki berumur 13 tahun dengan lesi litik tengkorak dibawa dengan diabetes insipidus dan MRI koronal sebagaimana yang dijelaskan pada Diagnosis manakah yang paling memungkinkan?
A. Tumor sel granular
D. Histiositosis sel Langerhan’s
B. Sarkoidosis
E. Germinoma
C. Adenoma Hipofise
D.
Note the abnormally thickened stalk with high signal intensity on this coronal MRl depicting Langerhans’ cell histiocytosis. The etiology of this condition is unknown, but it is believed to result from overproliferation of an antigen-presenting dendritic cell of bone marrow origin. Although it is usually treated as a neoplastic process, some speculate that it is due to malfunction of the immune system. Other manifestations of this disease may include lytic skull lesions (approximately 80% of cases) as well as hematopoietic, hepatic, and pulmonary abnormalities. A pathognomic finding of this condition on electron microscopy is the presence of Birbeck granules, a unique organelle of the Langerhans’ cell ( Ramsey, pp. 381-385; Merritt, p. 872) .
- Gangguan ini ditandai oleh berlipat gandanya sel yang mana? A. Fibroblast B. Limposit sel-T C. Antigen yang menampilkan Sel dendrit D. Eosinopil E. Sel yang berasal dari kantung Rathke
C. Note the abnormally thickened stalk with high signal intensity on this coronal MRl depicting Langerhans’ cell histiocytosis. The etiology of this condition is unknown, but it is believed to result from overproliferation of an antigen-presenting dendritic cell of bone marrow origin. Although it is usually treated as a neoplastic process, some speculate that it is due to malfunction of the immune system. Other manifestations of this disease may include lytic skull lesions (approximately 80% of cases) as well as hematopoietic, hepatic, and pulmonary abnormalities. A pathognomic finding of this condition on electron microscopy is the presence of Birbeck granules, a unique organelle of the Langerhans’ cell ( Ramsey, pp. 381-385; Merritt, p. 872) .
- Temuan patognomoik dari kondisi ini pada mikroskop meliputi adanya A. Granula Birbeck D. Granula keratohialin B. Kompleks jungsional E. Kromatin stippled C. Kristal kolesterol
A. Note the abnormally thickened stalk with high signal intensity on this coronal MRl depicting Langerhans’ cell histiocytosis. The etiology of this condition is unknown, but it is believed to result from overproliferation of an antigen-presenting dendritic cell of bone marrow origin. Although it is usually treated as a neoplastic process, some speculate that it is due to malfunction of the immune system. Other manifestations of this disease may include lytic skull lesions (approximately 80% of cases) as well as hematopoietic, hepatic, and pulmonary abnormalities. A pathognomic finding of this condition on electron microscopy is the presence of Birbeck granules, a unique organelle of the Langerhans’ cell ( Ramsey, pp. 381-385; Merritt, p. 872) .
- Apa yang dijelaskan pada fotomikrograf A. Neurofibroma B. Meningioma transisional C. Neuroma akustik D. Astrositoma pilositik E. Ksantoastrositoma pleomorfik
C Acoustic neuroma. Note the palisading of nuclei (picket fence-like arrangement) separated by an anuclear area (arrow) on this photomicrograph, which depicts a Verocay body ( El lison, pp. 695- 699) .
- Apa yang ditunjukkan oleh tanda panah? A. Badan verocay B. Whorls C. Batang psammoma D. Pseudopalisasing E. Daerah Antoni B
A Acoustic neuroma. Note the palisading of nuclei (picket fence-like arrangement) separated by an anuclear area (arrow) on this photomicrograph, which depicts a Verocay body ( El lison, pp. 695- 699) .
- Ketika seorang pasien tidak bisa aduksi mata kanannya pada saat memandang ke arah kiri tetapi mata tersebut bisa aduksi bila melihat konvergens, maka benjolan yang terjadi kemungkinan terdapat di lokasi mana? A. Faskikulus longitudinal medial kanan B. Faskikulus melintang tengah kiri C. Nukleus adusen kiri D. Nukleus adusen kanan E. Nukleus saraf kranial III
A. A lesion of the MLF does not allow for transfer of information from the abducens nucleus (CN VI) to the oppositeoculomotor nucleus (CN III) and results in internuclear ophthalmoplegia (INO). It is characterized by deficient adduction during attempted conjugate gaze away from the side of the MLF lesion and monocular nystagmus of the abducting eye. An MLF lesion is on the same side as the eye with the adduction wealmess, and I TO is named for the side of the MLF lesion . A lesion in the nucleus of CN I I I would paralyze volitional movements and convergence (Kline, pp. 63-64).
- Cedera saraf Medianus pada ketinggian siku
B Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Cedera saraf ulnar pada ketinggian siku
A Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Cedera saraf ulnar pada pergelangan tangan
A Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Cedera saraf interoseus anterior
C Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Kelumpuhan Klumpke
D Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Lesi akar saraf C8
C Compressive lesions of the ulnar nerve at the level of the elbow, forearm, or wrist can produce a “claw hand” (A) in severe cases. The ulnar half of the flexor digitorum profundus, lumbricals 3 and 4, the dorsal and palmar interossei, and the hypothenar muscles are typically paralyzed. When the metacarpophalangeal joints are extended, the distal and proximal interphalangeal joints cannot be extended because the interossei and half the lumbricals are not functional, which results in a “claw-like” posture. Laceration of the ulnar nerve in the wrist leaves the innervation of the ulnar side of the flexor digitorum profundus intact but can•also result in a claw hand. There is also loss of abduction of the thumb, so that a piece of paper cannot be held between the side of the thumb and the index finger. Lesions of the median nerve near the elbow can produce paralysis of the flexor digitorum superficialis, the flexor digitorum profundus I and II, the flexor pollicis longus, as well as the thenar muscles and lumbricals 1 and 2. This produces the “sign of benediction, “ in which the index and middle fingers cannot flex and the thumb cannot be opposed. In addition, there may be numbness over the radial side of the palm and of the digits lateral to the center of the ring finger. C8 nerve root or anterior interosseous nerve injury causes weakness of the long flexors of the thumb (flexor pollicis longus), index and middle fingers (weak flexor digitorum profundus I and II), and the pronator quadratus. In trying to pinch the index finger and thumb, the terminal phalanges extend and instead of the tips, the pulps touch (“pinch sign,” C) (April , pp. 98-100; Patten, pp. 285-296; Greenberg, p. 540) .
- Girus angular kiri A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
C Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Lobus parietal kanan bagian posterior A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
B Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Penyakit serebral menyeluruh A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
A Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Regio temporo-okcipital medial inferior A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
D Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Regio temporo-okcipital medial inferio A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
E Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Kedua lobus parietal A. Apraksia berpakaian B. Apraksia menulis C. Apraksia berbicara D. Apraksia gait E. Prosopagnosia F. Astereognosis G. Bukan salah satu dari A /d D
F Apraxia is defined as the inability to execute a normal volitional act despite the fact that the motor systems and mental status are relatively intact. Speech apraxia often results from a lesion near the posterior part of the inferior frontal gyrus (approximately area 44) , while writing apraxia or dysgraphia results from damage in the left angular gyrus. Dressing apraxia results from damage in the posterior right parietal lobe, while gait apraxia is usually associated with diffuse cerebral disease such as Alzheimer’s disease. Lesions that affect the inferomedial part of the temporo-occipital region tend to cause an inability to recognize facial features (prosopagnosia) , while lesions of either parietal lobe may produce astereognosis, in which patients fail to recognize the forms of objects when felt but not when viewed (Brazis, pp. 481-508) .
- Di manakah akson yang berbeda melayani sinaps refleks peregangan otot? A. Ganglia akar dorsal D. Nukleus Clark B. Neuron tanduk dorsal E. Rexed Lamina III C. Motoneuron ventral
C. The muscle stretch reflex is a monosynaptic circuit that is dependent on two neurons. Afferent axons serving the muscle stretch reflex synapse directly with ventral motaneurons (Carpenter, p. 79).
- Seorang buruh bangunan berusia 35 tahun terjatuh dari bangunan tiga lantai pada saat bekerja dan menderita cedera “complete spinal cord” pada level C2. Di antara fungsi-fungsi di bawah ini, fungsi-fungsi mana saja yang kemungkinan masih selamat setelah terjadinya cedera “complete spinal cord “semacam ini? 1. Mikturisi 2. Ejakulasi 3. Peristalsis 4. Bernafas
A. After a complete spinal cord i njury, all voluntary movements and sensation below the level of the lesion are lost, but a number of visceral reflexes may be preserved in some cases. A patient with a complete C2 spinal cord injury is unlikely to be able to breathe, since the spinal cord does not contain intrinsic circuitry for breathing. Retained reflexes may include micturition, defecation, peristalsis, and possibly even ejaculation, although there may be no sensation of the sexual act (Brazis, pp. 85-88; DeMyer, pp. 142 - 143 ) .
- Nn. X, 15 tahun mengunjungi dokternya serebelum dimulainya musim pertandingan sepak bola. Dokternya melihat bahwa ketika pasien mengatakan “Aah” sisi kiri lidahnya tidak terangkat. Cacad apa lagi yang mungkin dapat ditemukan pada pasien semacam ini? 1. Mengunyah 2. Mengucapkan bunyi 3. Mengecap 4. Mengeluarkan air liur
. A . The most important cranial nerve for palatal elevation is generally CN X. Interruption of the left CN X can causeparalysis of palatal elevation on the left side. Taste, swallowing, and phonation are also partially subserved by CN X; therefore an insult to this cranial nerve may result in problems with speech, swallowing, and taste. Salivation problems may be evident with deficits in CN VII and IX (Carpenter, pp. 137 - 144, 172 - 173)
- Serat-serat perifer kecil termielinasi dari jalur ini bersinapse di substantia gelatinosa dari dorsal horn
I The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Serat-serat ini melewati pedunkulus serebelar superior
J The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Traktus ini tumbuh dari nukleus Dieter’s
F The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Propriosepsi secara sadar dari kaki terutama ditransmisikan di dalam traktus ini ini
B The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Membawa serat dari nuklei vestibular medial dan inferior, traktus tektospinal, dan nukleus interstitial dari Cajal.
G The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Serat-serat dari traktus ini berasal dari lapisan V korteks serebral
C The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Membawa serat yang naik ke arah thalamus, periaqueduktal gray, formasio retikular, atau kolikulus superior
I The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Serat-serat piramidal yang tidak menyilang dan terutama memasok muskulatur aksial
H The major ascending tracts of the spinal cord (left) are the dorsal columns, spinothalamic tract, dorsal spinocerebellar tract, and ventral spinocerebellar tract. The dorsal columns convey tactile discrimination (Meissner corpuscles), vibration (pacinian corpuscle) , joint position sense (muscle spindles and Golgi tendon organs), and conscious proprioception . First-order neurons give rise to axons that ascend in the fasciculus cuneatus (A, upper extremity fibers) and gracilis (B, lower extremity), which terminate in the gracile and cuneate nuclei of the medulla. Second-order neurons, known as arcuate fibers, cross to the contralateral side as the medial lemniscus and ascend to the ventral posterolateral (VPL) nucleus of the thalamus. Synaptic connections are then made in the thalamus with third-order neurons, which travel through the posterior limb of the internal capsule to reach the postcentral gyrus of the cerebral cortex. Four groups of fibers have been distinguished in the anterolateral system (I) on the basis of their anatomic projections: spinothalamic, spinoreticular, spinomesencephalic, and spinotectal. First-order neurons of the lateral spinothalamic tract (pain and temperature sensation) project axons via the dorsolateral tract of Lissauer to secondorder neurons in the substantia gelatinosa of the dorsal horn . Second-order neurons then decussate in the ventral white commissure, ascend in the ventral half of the lateral funiculus, and synapse in the VPL nucleus of the thalamus. Third-order neurons from the thalamus are then relayed to the somatosensory cortex of the postcentral gyrus (areas 3, 1 , and 2) through the posterior limb of the internal capsule. A number of collateral fibers from the spinothalamic tract are relayed to the reticular formation (spinoreticulothalamic tract), which transmits nociceptive fibers to the intralaminar nuclei of the thalamus. Additional fibers of the anterolateral system terminate in either the periaqueductal gray (spinamesencephalic) or the deep layers of the superior colliculus (spinotectal). The periaqueductal gray sends descending projections to serotonergic neurons of the raphe nucleus of the pons and nucleus gigantocellularis (noradrenergic neurons) of the medulla. Both of these areas, in turn , send projections to the dorsal horn and inhibit postsynaptic responses to nociceptive input. The spinotectal pathway directs visual attention to areas of the body that experience intense somatosensory input. Other pathways, such as the dorsal spinocerebellar (K) and ventral spinocerebellar tracts (J), transmit unconscious proprioception from the lower limbs and inferior half of the body to the cerebellum, while the cuneocerebellar and rostrocerebellar tracts com•ey similar information from the upper body and limbs (not shown ) . The corticospinal tract arises predominately from three cortical areas (approximately 30% each): the premotor cortex (area 6), the precentral motor cortex (area 4), and the postcentral sensory cortex (areas 3, 1, and 2). It undergoes a 90% decussation in the caudal medulla and travels in the dorsal quadrant of the lateral funiculus of the spinal cord. The ventral corticospinal tract (H) is a small, uncrossed tract that decussates in the ventral white commissure and is mainly concerned with control of axial musculature. The vestibulospinal tract (F) arises from the lateral vestibular nucleus (Dieter’s) and influences extensor tone. The medial longitudinal fasciculus (G) carries fibers from medial and inferior vestibular nuclei, tectospinal tract, and interstitial nucleus of Cajal and coordinates eye movements, mediates nystagmus, and helps control conjugate gaze (Carpenter, pp. 83-106; Pritchard , pp. 114-125; Brazis, pp. 80-85; DeMyer, pp. 120- 132 ) .
- Tergesernya saraf Fasialis oleh neuroma akustik paling lazim (dengan frekuensi yang menurun) menuju ke arah mana? A. Bawah, kemudian depan, atas, belakang B. Anterior, diikuti superior, inferior dan posterior C. Depan, kemudian bawah, atas, dan belakang D. Belakang, kemudian depan, bawah dan jarang ke atas E. Atas, kemudian bawah, depan belakang.
B. Facial nerve displacement by an acoustic neuroma is most commonly (in decreasing order of frequency) anterior, followed by superior, inferior, and posterior. The facial nerve is often stretched during microdissection and is most susceptible to injury at the proximal rim of the porus acusticus (Connolly, p. 475).
- Kelumpuhan lantai pelvis, anestesia sadel simetris, gangguan ereksi dan ejakulasi, konstipati dan “autonom neurogenic bladder” paling menjelaskan lesi spinal cord yang mana? A. Benjolan pada segmen sakral pertama dan kedua B. Sindroma Cauda equine C. Sindroma conus medularis D. Sindroma tethered cord E. Siringomielia
C. Paralysis of pelvic floor muscles, early sphincter and bladder dysfunction, symmetric saddle anesthesia, impaired erection and ejaculation , constipation, and minimal pain best characterize the conus medullaris syndrome. A tethered cord may present with a combination of neurologic, urologic, orthopedic, and dermatologic manifestations. Commonly patients present with numb feet, muscle atrophy, upper motor neuron signs, bowel and bladder dysfunction, foot deformities, scoliosis, and cutaneous stigmata of spinal dysraphism. Compression of the lumbar and sacral roots below L3 often results in cauda equina syndrome, which is characterized by early pain, asymmetric saddle anesthesia, and a variable patellar reflex response. Sphincter changes are often similar to those of the conus medullaris syndrome but tend to occur late in the clinical course. With S 1 lesions, there is weakness of the triceps surae, flexor digitorum longus (FDL), flexor hallucis longus (FI-lL) , and small foot muscles. The Achilles reflexes are absent, whereas the patellar reflexes are preserved. There is complete sensory loss over the sole, heel, and outer part of the foot and ankle . The gastrocnemius and soleus muscles are stronger with S2 segmental lesions, however, the FDL, FI-lL, and foot muscles remain weak. The sensory loss tends to involve the upper part of the dorsal calf, dorsolateral thigh, and the saddle area (Brazis, pp. 99- 100) .
- Temuan yang ditunjukkan pada CT scan di bawah ini paling mungkin terjadi setelah A. Pecahnya aneurisma Berry B. Infeksi C. Diseksi arteri karotid ekstradural D. Trauma E. Pemberian kontras
D. This CT demonstrates a subarachnoid hemorrhage (SAI-l), which is most commonly seen after trauma. Althoughthe blood pattern may vary, traumatic SAH often involves the convexities of the cerebral hemispheres, while aneurysmal subarachnoid hemorrhages generally have a preponderance of blood in the basal cisterns (Greenberg, p. 754).
- Daerah korteks serebral manakah yang asosiasinya paling kuat dengan indera penciuman secara sadar? A. Korteks asosiasi temporal B. Girus singulate C. Sistem limbik D. Korteks orbitofrontal E. Amigdala
D. Experimental studies indicate the orbitofrontal cortex is a key region involved with the conscious perception of smell, as lesions in this region have been shown to result in failure to discriminate between various odorants ( Kandel, p. 633) .
- Diagnosis apakah yg paling memungkinkan? A. Astrositoma pilositik B. Meduloblastoma C. Infark Subakut D. Penyakit LHERMITTE-DUCLOS E. Ependimoma
D This T2-weighted image shows the hyperintense and thickened folia in a characteristic laminated pattern that is most consistent with Lhermitte-Duclos disease. It is associated with hypertrophy of granular cell neurons and axonal hypermyelination in the molecular layer (Osborn DN, pp. 69-70) .
- Di antara ciri-ciri di bawah ini, ciri-ciri manakah yang paling menjelaskan kelainan ini? A. Benjolan ini biasanya cukup banyak memiliki serat Rosenthal. B. Paling sering merupakan benjolan sekunder dari oklusi arteri vertebral. C. Hipertropi sel neuron-granular dan hipermielinisasi aksonal pada lapisan molekular D. Bukti rosette Homer-Wright pada sectioning histopatologis E. Pseudoroset pada sectioning histopatologis
C This T2-weighted image shows the hyperintense and thickened folia in a characteristic laminated pattern that is most consistent with Lhermitte-Duclos disease. It is associated with hypertrophy of granular cell neurons and axonal hypermyelination in the molecular layer (Osborn DN, pp. 69-70) .
- Ny. X, 42 tahun dibawa ke UGD dalam keadaan berkunang-kunang dan citra MR T2-weighted sebagaimana yang ditunjukkan di bawah ini. Diagnosis manakah yang paling mungkin? A. Ganglioglioma lobe temporal B. Tumor neuroepitelial disembrioplastis C. Kiste epidermoid D. Aneurisma E. Neurokistiserkosis
D . This T2-weighted MRI shows a right temporal lobe mass with signal loss (flow void), which is most consistent with a large middle cerebral artery aneurysm (Osborn DN, pp. 266-268).
- Diensepalon posterior/pretektum (nukleus interstitial dari Cajal); regio suprasellar M A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
C (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Midbrain dorsal A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
G (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Pons (fasikulus longitudinal medial) A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
I (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Pons sentral A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
E (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Olive inferior ipsilateral, nukleus Red, nukleus dentate kontralateral (Segitiga Mollaret). A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
H (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Medulla, tegmentum ventral dari pons, jalur serebellar A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
B (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Cervicomedullary junction A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
A (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Pontomedullary juction, jalur vestibular A. Nistagmus downbeat B. Nistagmus upbeat C. Nistagmus seesaw D. Nutan spasmus E. Bobbing ocular F. Flutter ocular G. Nistagmus Konvergens-retraksi H. Mioklonus Okular I. Nistagmus Abducting J. Nistagmus Bruns
J (Brazis, pp. 221- 232; Wi lkins, pp. 118-125).
- Seorang pasien menderita memar kepala setelah tabrakan kendaraan bermotor dan tercatat menderita ecimosis pada mata kanan, dengan diplopia pada saat melihat ke bawah dan ke kiri. Diplopia ini paling mungkin mencerminkan kelemahan otot yang mana? A. Oblik Superior kanan B. Rektus atas kiri C. Rektus bawah kanan D. Oblik bawah kiri E. Oblik bawah kanan
A. Orbital injuries often impair the action of the superior oblique muscle because of displacement of the trochlea, which attaches to the anterior rim of the orbit and acts as a sling for the recurrent course of the trochlear tendon. Looking down and to the left typically involves the right superior oblique (trochlear nerve, IV) and left inferior rectus (oculomotor nerve, III) muscles. •when the eyes look conjugately toward any object, the muscle that is the prime moverworks in unison with the muscle of the opposite eye (Kline, pp. 105-114) .
- Lesi yang ditunjukkan pada fotomikrograf di bawah ini mungkin berasosiasi dengan hal-hal di bawah ini, KECUALI A. Faktor keturunan dominan autosaomal B. Karsinoma sel ginjal C. Kiste Pankreatis D. Terlalu banyak produksi eritropoietin E. Gen penekan tumor yang memetakan kromosom 9p25
E. Note the numerous capillaries and cells with a vacuolated appearance in this. photomicrograph depicting a hemangioblastoma. This tumor is associated with VHL in about 25% of cases, is carried in an autosomal dominant fashion (chromosome 3p25), and is associated with retinal angioma, renal cell carcinoma, renal and pancreatic cysts, pheochromocytoma, or epididymal papillary cystadenoma. This tumor may cause polycythemia in about 1 0% of cases due to inappropriate production of erythropoietin (Ellison , pp. 736- 738) .
Ny. X, 47 tahun menjalani kliping aneurisma bifurkasi arteri serebral tengah yang pecah dan memerlukan transfusi darah selama menjalani perawatan pemulihan di UPI. Pasien mengalami hipotensi, demam. pusing, dan sakit punggung begitu menerima unit pertama sel darah merah paket (PRBC). 98. Etiologi manakah yang paling mungkin berdasarkan temuan ini? A. Sensititasi sebelumnya atas pasien yang tingkat antibodi-nya tidak terdeteksi pada saat pemeriksaan golongan darah. B. ABO tidak cocok C. Adanya berbagai antibodi antileukosit pada pasien yang terjadi pada transfusi darah sebelumnya. D. PRBC telah tercemar virus E. Jawaban A, B, C, dan D semuanya salah
B Acute hemolytic transfusion reactions are uncommon and are rarely life-threatening. They are produced by antibodies in the recipient that bind to ABO surface antigens or erythrocytes of mismatched do
Ny. X, 47 tahun menjalani kliping aneurisma bifurkasi arteri serebral tengah yang pecah dan memerlukan transfusi darah selama menjalani perawatan pemulihan di UPI. Pasien mengalami hipotensi, demam. pusing, dan sakit punggung begitu menerima unit pertama sel darah merah paket (PRBC). 99. Langkah pengelolaan berikutnya yang manakah yang paling perlu ditempuh? A. Transfusi harus diteruskan, tetapi harus diperiksa kadar haemoglobin dan bilirubin-nya B. Berikan dipendidramin (25 mg) IV segera dan lanjutkan transfusi C. Berikan Epineprin (1:1000) dengan dosis 0,5 mg setiap 10 sampai dengan 15 menit sampai reaksi perlawanan mereda. D. Transfusi harus segera dihentikan dan darah pasien harus dikirim untuk ditest kadar hemoglobin, Haptoglobin dan test Coombs. E. Hentikan transfusi, berikan asetaminopen dan dipenhidramin 30 menit sebelum melakukan transfusi darah berikutnya.
D Acute hemolytic transfusion reactions are uncommon and are rarely life-threatening. They are produced by antibodies in the recipient that bind to ABO surface antigens or erythrocytes of mismatched do
- Tumor manakah yang merupakan tumor spinal cord intradural yang paling lazim pada pasien neurofibromastosis tipe II (NF-2)? A. Schwannoma B. Meningioma C. Paraganglioma D. Astrositoma E. Ependimoma
E. The presence of multiple intradural spinal cord tumors is relatively common with NF-2 and may include ependymomas (most common), schwannomas, and meningiomas (Greenberg, p . 478).
- Rusaknya sel-sel piramidal dari “Ammon’s Horn” paling mungkin menyebabkan hilangnya proyeksi aksonal berat kepada struktur mana? A. Korteks subikulum dan entorhinal. B. Korteks pramotorik C. Amigdala D. Talamus Ventrilateral E. Kolikulus atas
A. The pyramidal neurons of the hippocampus (Ammon’s horn) send numerous fiber projections to the subiculum and entorhinal cortex (area 28), which form the anterior part of the parahippocampal gyrus (Carpenter, pp. 369-382)
- Apa yang ditunjukan pada fotomikrograf di bawah ini A. Hemangioperisitoma B. Medulloblastoma C. Melanoma D. Tumor rabdoid E. Germinoma
A. Note the “staghorn” vascular channel in this grade II hemangiopericytoma. These tumors are vimentin-positive, EMA-negative, have a dense arrangement of sheet-like cells, and have a high nuclear-cytoplasmic ratio. Other characteristics include focal lobularity, paucicellular areas, and dense pericellular reticulin (Ell ison, pp. 736-738).
- Seorang pasien dibawa kepada seorang neurolog dengan riw 2 minggu lemah otot wajah kanan bawah. Jika pasien ini menderita apasia, jenis apasia manakah yang paling mungkin menyertai lemah pada wajah? A. Agrapia B. Alexia tanpa agraphia C. Apasia ekspresif D. Apasia fluent E. Agnosia kata auditoris
C. Lesions that occupy the anterior part of the left parasylvian fissure may cause a nonfluent type of aphasia (Broca’s). This region may abut the parts of the motor cortex that supply • the upper motor neuron fibers for the contralateral facial nucleus. Therefore a patient with right-sided upper motor neuron facial deficit may also have an expressive-type of aphasia originating from Broca’s area (Brazis, pp. 511-5 16)
- Potongan koronal melalui bidang genu kapsula interna akan membelah struktur yang mana? A. Putamen B. Globus Pallidus C. Nukleus kaudate D. Hipotalamus E. Talamus
B. A coronal section through the genu of the internal capsule would almost exclusively bisect the globus pallidus, which is triangle-shaped, with its apex fitting into the genu of the internal capsule (Carpenter, pp. 33 7-344 ) .
- Lesi yang dijelaskan di bawah ini paling mungkin berasal dari pembuluh darah yang mana? A. Arteri serebral tengah aksesoris B. Arteri frontopolar C. Arteri temporal anterior D. Arteri temporal belakang E. Lentikulostriata
C. The middle cerebral artery (l’dCA) is divided anatomically into four major segments:
- Berapa persen pasien dengan perdarahan subaraknoid yang sekunder dari pecahnya aneurisma kemudian berkembang menjadi vasospasma angiografis ada suatu saat tertentu selama perawatan rawat inap mereka? A. 20% B. 30% C. 70% D. 80% E. 90%
C. Most patients develop some degree of vessel narrowing after aneurysmal subarachnoid hemorrhage. About 70% will develop angiographic vasospasm, and approximately 30% will go on to develop symptomatic vasospasm (Youmans, p. 1545).
- Ny. X, 43 tahun dengan akromegali dan hasil MRI pasien menunjukkan adanya makroadenoma pituitaris 3 cm yang memanjang ke dalam sinus kavernosus kanan. Pandangan pasien normal dan kadar hormon pertumbuhan serum setelah pemicuan hiperglikemia adalah 220 mg/dl. Langkah berikutnya yang paling tepat dalam mengelola pasien ini bisa meliputi: A. Bedah trans-spenoidal B. Radiosurgeri C. Oktreotida D. Terapi radiasi konvensional E. A dan C.
E. Over the past few decades a variety of medical, surgical, and radiation interventions have evolved that have proven effective in reducing GH levels. No one treatment is uniformly effective, and often a combination of interventions is required. When a macroadenoma is surgically resected transsphenoidally, endocrine remission rates vary between 65 and 90%. When a macroadenoma is resected, immediate postoperative remission is reported to be even lower (30 and 79%) . The rate of remission is adversely affected by a higher preoperative GH level and larger invasive tumors. Therefore biochemical cure with surgery for large GH-secreting macroadenomas is typically not expected. Conventional radiation therapy can usually shrink pituitary tumors when up to 50 Gy is delivered in 1 . 8-Gy fractions over 6 weeks, but a decrease or normalization of GH levels usually takes many years. ‘When initial GH levels are > 100 f!g/mL, only 60% of patients will attain GH levels
- Vena talamostriata
A Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Vena septal
D Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Talamus
G Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Pleksus koroid
B Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Vena kaudate anterior
F Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Vena koroidal superior
C Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Forniks
E Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Vena talamik superficial Superior
H Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Nukleus kaudate
I Figure 8. 108-8 . 1 16Q demonstrates the surgical anatomy of the right lateral and anterior third ventricle during endoscopic third ventriculostomy for aqueductal stenosis. The ventriculostomy site is depicted in the floor of the third ventricle in this figure. The veins of the third ventricular system collect into deeper veins that course in a subependymal location as they travel through the margins of the choroidal fissure to empty into the internal cerebral, basal, and great veins. In general, the veins draining the frontal horn and body of the third ventricle drain into the internal cerebral vein (not depicted here) as it courses through the velum interpositum; those draining the temporal horn drain into a segment of the basal vein of Rosenthal coursing through the ambient cistern; and the veins from the atrium drain into segments of the basal, internal cerebral, and great veins coursing through the quadrigeminal cistern. Of note, the thalamostriate vein passes forward in the sulcus between the caudate nucleus and thalamus toward the foramen of Monro (FOM), where it turns sharply posterior to enter the velum interpositum to join the internal cerebral vein. The angle formed by the junction of the internal cerebral vein and thalamostriate vein, referred to as the venous angle, approximates the level of the FOM on the lateral view of a cerebral angiogram (Wil ki ns, pp. 1427-1429; Youmans, pp. 1237 - 1240 ) .
- Cedera pembuluh vena talamostriate selama operasi 1. Cepat mengantuk 2. Infark hemorargis pada ganglia basal 3. Hemiparesis 4. Mutisme
E . Occlusion or injury of the thalamostriate vein may cause drowsiness, hemiplegia, mutism, and hemorrhagic infarction of the basal ganglia (Wilkins, pp. 1427-1429) .
- Ciri-ciri mikroskopis khas dari cedera aksonal menyebar (DAI) 12 sampai 24 jam setelah terjadinya bisa mencakup 1. Astrogliosis 2. Bola retraksi aksonal 3. Makropagus Hemosiderin-laden 4. Perdarahan perivaskular
C. Acute microscopic changes after DAI typically include axonal retraction balls and perivascular hemorrhages, while in later stages there can be astrogliosis, endothelial proliferation, and accumulation of hemosiderin-laden macrophages (Marion, pp. 40-45; Ellison, pp. 249 - 2 5 7 ; Ramsey, pp. 431- 434)
- Sampai seberapa jauhkah jarak iliac crest di bawah skiatic notch? A. 3 sampai dengan 4 cm B. 4 sampai dengan 5 cm C. 7 sampai dengan 8 cm D. 10 sampai dengan 12 cm E. 14 cm
C. In approaching the posterior ilium during autogenous iliac bone graft harvesting, a limited incision that stays within 8 em of the posterior superior iliac spine typically avoids the superior cluneal nerves. Dissection is then carried down to the gluteal fascia, which should be opened directly above the iliac crest to facilitate fascial closure. During subcrestal exposure, the lateral subperiosteal dissection should be carried to the gluteus medius and tensor fascia lata muscles. Subperiosteal dissection usually avoids damage to the superior gluteal artery, which courses through the musculature. The sciatic notch usually lies approximately 7 to 8 em below the iliac crest and must not be violated, as it harbors the main trunk of the sciatic artery, the sciatic nerve, and the CHAPTER 8 Multidisciplinary Self-Assessment Answers 273 ureter, which runs ventral to the superior gluteal artery. Medially, the dissection should extend to the iliacus muscle, which prevents injury to the iliohypogastric and ilioinguinal nerves (Connolly, pp. 819-820).
- Etiologi kelainan pada scan MRI A. Iatrogenik C. Traumatis E. Neoplastis B. Infeksi D. Pertumbuhan
D Not the absence of the corpus callosum and the high-riding third ventricle on this sagittal MRI depicting agenesis of the corpus callosum. This condition is usually not associated with Chiari I malformation but rather with the Chiari II malformation (Osborn DN, pp. 29-33) .