Imaginary... Flashcards
Prove sina+b = sinacosb …
Cos(a+b) + iSin(a+b) = e^(a+bi) = e^ai x e^bi = (cosa + isina)(cosb isinb) = isinacosb + isinbcosa + cosacosb - sinasinb
de moivers theorem Z^n
Z^n = (r(cos0 +isin0))^n = r(cosn0 +isinn0)
how to switch number into R(isin0+cos0)
4i = 4in magnitude and direction pi/2
thus r = 4
0 = pi/2 or arctan(IM/RE)
answer to 3^(2+i) using moivers
e^(ln3)(2) x e^(ln3)i =
9 X (cos[ln3] +isin[ln3])
e^io
cis 0
find the other root if 1 and 2e^(i/3) are part of it
2e^(-i/3)
steps to solve z^n = w
put w in modulus arg form
use de moivers for z^n = rcos…
compare modulus
compare argument n0 = arctan IM/RE
prove the roots of unity sum to 0
let W = e^(2i[pi]/n) where 1+W1+W2+…W(n-1) are the roots of unity
thus Wn = 1
Wk = W^K thus roots = 1+ W + W^2 + W^3 +….
geometric sequence where r = W
1-W^n = 1-1 = 0 thus roots sum to 0
how to add two transformations of imaginary vectors
compare magnitudes (multiple of) for magnification
compare argument (subtracting) for angle
e^i0 +e^-i0
= 2cos 0