Hyperbolic Functions Formula Flashcards
sinh(x)
eˣ - e⁻ˣ/2
cosh(x)
eˣ + e⁻ˣ/2
tanh(x)
sinh(x)/cosh(x) = [eˣ - e⁻ˣ] / [eˣ + e⁻ˣ] or [e²ˣ -1] / [e²ˣ +1]
cosech(x)
2/eˣ - e⁻ˣ
sech(x)
2/eˣ + e⁻ˣ
coth(x)
cosh(x)/sinh(x) = [eˣ + e⁻ˣ] / [eˣ - e⁻ˣ] or [e²ˣ +1] / [e²ˣ -1]
d/dx sinh(x)
cosh(x)
d/dx cosh(x)
sinh(x)
d/dx tanh(x)
sech²(x)
d/dx cosech(x)
-cosech(x) ⋅ coth(x)
d/dx sech(x)
-sech(x) ⋅ tanh(x)
d/dx coth(x)
-cosech²(x)
cosh²(x) - sinh²(x)
1
tanh²(x) + sech²(x)
1
coth²(x) - cosech²(x)
1
sinh(x ± y)
sinh(x) ⋅ cosh(y) ± sinh(y) ⋅ cosh(x)
cosh(x ± y)
cosh(x) ⋅ cosh(y) ± sinh(x) ⋅ sinh(y)
sinh(2x)
2[sinh(x) ⋅ cosh(x)]
cosh(2x)
cosh²(x) ⋅ sinh²(x)
sinh²(x)
[cosh(2x) - 1] /2
cosh²(x)
[cosh(2x) + 1] /2
sinh⁻¹(x)
ln |x + C|
cosh⁻¹(x)
ln |x + √(x² - 1)|
tanh⁻¹(x)
1/2ln |(1 + x) / (1 - x)|
cosech⁻¹(x)
1/2ln |(x + 1) / (x - 1)|
sech⁻¹(x)
ln |{1 + √(1 - x²)} / x|
coth⁻¹(x)
ln |1/x + √(1 - x²) / |x||
d/dx sinh⁻¹(x)
1/√(x² + 1)
d/dx cosh⁻¹(x)
1/√(x² - 1)
d/dx tanh⁻¹(x)
1 / (1 - x²)
d/dx cosech⁻¹(x)
-1 / [|x|√(1 + x²)]
d/dx sech⁻¹(x)
-1 / [x√(1 - x²)]
d/dx coth⁻¹(x)
1 / (1 - x²)