Hyperbolic Functions Flashcards
0
Q
Derivative of sinhx
A
coshx
1
Q
Hyperbolic identities
A
- sinh(-x) = - sinhx
- cosh2(x) - sinh2x = 1
- sinh(x+y) = sinhx.coshy + coshx.sinhy
- cosh(x+y) = coshx.coshy + sinhx.sinhy
- cosh(-x) = coshx
- 1 - tanh2x = sech2x
2
Q
Derivative of coshx
A
sinhx (NOT -sinhx)
3
Q
Derivative of tanhx
A
sech2x
4
Q
Derivative of cschx
A
-cschx.cothx
5
Q
Derivative of sechx
A
-sechx.tanhx
6
Q
Derivative of cothx
A
-csch2x
7
Q
Definition of sinhx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/223/a_image_thumb.png?1659432464)
8
Q
Define coshx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/229/a_image_thumb.png?1659432464)
9
Q
Define tanhx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/232/a_image_thumb.png?1659432464)
10
Q
Define cosechx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/277/a_image_thumb.png?1659432465)
11
Q
Define sechx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/280/a_image_thumb.png?1659432465)
12
Q
Define cothx
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/288/a_image_thumb.png?1659432465)
13
Q
Derivative of sinh-1x
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/327/a_image_thumb.png?1659432465)
14
Q
Derivative of cosh-1x
A
![](https://s3.amazonaws.com/brainscape-prod/system/cm/111/896/612/a_image_thumb.png?1659432466)