Hoorcollege 2 Regression Flashcards
(4 cards)
1
Q
Machine learning problems
A
- Regression: from data to scores:
- x = [x1, x2, x3] assign it to a score z = wx + b
learning: minimizing loss on training data
2
Q
Gradient (descent)
A
wat als parameter w veranderd bij dw, hoeveel veranderd de loss functie?
* n is the learning rate
βπ π/ππ€ πΏ(π¦Μ,π¦)
Loss function: squared error
3
Q
Logistic regression
A
Score is a label (good / bad)
* Classification is regression
use probabilities for training
* Pgood([23,5,1]) β 0
From a score to probability:
* sigmoid = π(π§) = 1 / (1 + π ^(βπ§) )
4
Q
Other error functions
A
- Squared error: πΏ_πππΈ (π¦Μ,π¦)=(π¦Μβπ¦)^2
- Mean squared error: error high for big distances
- Surprisal: S(p) = - log(p)
Error is high for is low probabilities - Cross entropy loss
Extending to mulitple classes:
* softmax(π§_π )=π^(π§_π )/(Ξ£_(π=1)^πΎ π^(π§_π ) )
In practice: Pytorch