HIV- the innate immune response Flashcards
What are retroviral restriction factors?
Specific proteins produced by the cell to combat retrovirus infection (they are natural antivirals- could help in treatment)
Retroviral restriction factors have been studied in mice for the Murine Leukaemia Virus. There are two strains/alleles in this virus. What are they called?
N-tropic- This is only infectious for NIH-Swiss mice
B-tropic- this is only infectious in Balb/ c mice
Charlotte Friend researched Murine Leukaemia Virus in mice and concluded that there was a ‘Friend virus susceptibility factor-1’ aka ‘Fv1’. There were two alleles to this too, Fv1-N and Fv1-B. What did these alleles do/prevent? When abouts in the life cycle does this act?
Mediated post-entry block to viral replication
When there is an Fv1-B susceptibility factor, B-MLV can replicate but it seems to block N-MLV (this would also happen the other way round)
Acts after reverse transcription and before entrance to the nucleus
What was found about the genome of the Fv1 factors and how it was homologous to another protein?
What was required to change in order for the tropism of the virus to?
Protein has 60% homology with MLV capsid protein (so probably derived from a retrovirus)
Only one base change is needed to change in order for the virus to be able to infect other strains of mice
e.g arginine (N) to glutamate (B)
HIV-1 was found not to grow well in non-human cells (apart from chimpanzees and gorillas). This was also due to restriction factors, but what differed from this blocking in non-human cells or positive factor in human cells to the Fv1 block?
It acted before reverse transcription, not after as with Fv1
It was not known whether this was due to the fact that non-human cells lacked a positive factor or whether they had a negative factor that blocked it at this point
How was it discovered that there must be a negative factor in the non-human cells that prevents the reverse transcription of HIV-1?
Cell fusion experiments where a rhesus monkey cell and human cell were fused using polyethylene glycol.
The virus didn’t replicate implying there was a negative factor present in non-human cells
Describe the method that was used for identifying HIV-1 restriction factors.
A cDNA library was formed from a rhesus monkey cell. A human cell was the transfected with this. Infect with HIV-GFP (flourescent protein to mark) so all infected cells glowed green.
Most of the replicated cells expressed GFP so they had the virus but some did not, suggesting replication was blocked in these cells. These were selected and amplified several times and then carried out PCR, cloned and then sequenced the plasmid
A restriction factor that was identified was TRIM5α which is a family of proteins. What is the structure?
RING domain, B-box, coiled coils and a SPRY (B30.2) domain
What is the function of TRIM5α? How does that relate to their structure?
SPRY domain interacts with the capsid antigen
RING and B-box targets the virus to proteosomal degradation (ubiquitination)
Coiled coil induces trimerisation
So the mechanism is as follows: the trimer of the TRIM5α protein is interacting with the three-fold symmetry of the capsid antigen (could be that each of the three SPRY domains are interacting with two of the six capsids which form the structure) then targetting to proteosomal degradation
The capsid protein (p24) of the HIV is made up of hexamers and pentamers. What needs to be mutated to prevent the TRIM5α block?
Arg110 of capsid to Glu (like the MLV capsid!)
What are the two different mechanisms that TRIM5α is thought to carry out in order to block the virus?
Virus enters cytoplasm and capsid is released. Capsid is recognised. TRIM5α then may:
Break open the capsid to release the content, but the capsid needs to be intact in order for transcription to occur
Could get proteosomal degradation due to auto-ubiquitation
TRIM5α is actually also present in human cells but does not block HIV-1 virus. Why is this the case? What other virus is not blocked by human TRIM5α?
There is a mutation in the SPRY domain of human TRIM5α preventing interaction with HIV-1 capside antigen hence why it can replicate in human cells much more efficiently than in non-human cells
HIVcpz
Is TRIM5α recognising the individual capsid antigen or the whole structure of the capsid?
The whole structure- when the capsid antigen monomer is present only, it is not recognised
What does the Vif (virion activity infectivity factor) do? How was this discovered?
A protein involved in making the virus infectious by affecting the virus particle maturation and binds to virion RNA in cytoplasm, incorporated into virions
Reverse genetic analysis
What was found about the phenotype of Vif mutant/ p HIV delta vif (basically those which had been mutated so that vif doesn’t work/is not expressed anymore) viruses?
What did this prove/show/what was concluded?
That the phenotype of an HIV-1 Vif mutant was cell dependent- in permissive cells, nothing happened but in non-permissive cells, a non-infectious virus was found
Vif counteracts a cellular antiviral factor which is only expresesed in non-permissive cells (primary human T-cells and some T-cell lines like CEM)- APOBEC3G