Hematology Unit 1 BL class of 2019 Flashcards

1
Q

hematology is concerned with what in relation to blood?

A

nature, function, diseases

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

what are the 3 major types of cells in blood?

A

erythrocytes (RBC), leukocytes (WBC), platelets

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

peripheral blood is what?

A

blood flowing through arteries and veins

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

what is hematopoiesis?

A

the making of blood in marrow from hematopoietic stem cells, differentiation of development, production of all types of blood cells

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

cellular component of blood makes up _______-______% of its volume.

A

40-45%

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

what is the rest of blood (the liquid stuff) called?

A

plasma

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

what do you need to do to blood when drawing for tests?

A

know if plasma or serum is needed and what anticoagulant you need

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

list the components of plasma, buffy, and RBC layers of blood samples.

A

Plasma is in the plasma, buffy is WBC and platelets, then RBC

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

erythrocytes

A

bulk of cellular blood. lack nucleus, lack mitochondria. contain mucho mucho hemoglobin. 120 day life span. 175 billion made per day.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

hemoglobin

A

tetrameric protein, reason RBCs are red. most has 2 alpha globulin chains and 2 beta globulin chains—>Hemoglobin A. each of the tetramers are bound to a heme prosthetic group

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

mutations in hemoglobin can lead to:

A

molecules that bind O2 less well, unstable molecules (premature breakdown—hemolysis), polymerization into long chains/crystals, abnormally shaped/fragile cells

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

hemoglobin S

A

most common mutation in RBC, leads to sickle cell disease. glu—>val at 6th position in beta globin chain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

imbalances in alpha or beta globin chains lead to ______.

A

thalassemias

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

what is porphyria?

A

mutations in enzymes involved in synthesis of heme prosthetic group

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

what type of metabolism do RBCs depend on?

A

anerobic

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

mutations in genes coding for enzymes needed for anaerobic metabolism cause _______.

A

hemolytic anemia. most common version is G6PD (x linked, 15% of african male population). G6PD is most common human enzyme defect.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

why are RBC’s shaped like a biconcave disc?

A

provides 40% more surface area than sphere with same volume, allowing for more gas exchange. allows them also to squeeze into different shapes due to ratio. allows them to move through/be culled in endothelium of the spleen

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

what allows the RBC to be deformable and still maintain its structural integrity?

A

a 2D elastic network of cytoskeletal proteins tethered to cytoplasmic domains on the transmembrane proteins in the membrane.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

what substrates does bone marrow need to make RBCs?

A

iron (can be decreased due to diet, blood loss, etc.), vit. B12 and folic acid, erythropoietin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

what are the 5 WBCs:

A

lymphocytes, neutrophils (PMNs), monocytes, eosinophils, basophils

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

lymphocytes

A

key players in adaptive immune response (development of memory after exposure to an infectious agent)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

innate immunity

A

protection against infection that relies on pre-existing mechanisms. capable of rapid response

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

neutrophils

A

WBC responsible for finding, ingesting (phagocytosis), digesting bacteria, cell debris, dead tissue. 7 hours half life in peripheral circulation. 70 billion made per day.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

malignancies arise from cells of _______ origin.

A

hematopoietic. all are clonal, neoplastic (cells have undergone several mutations altering proliferative/differentiation capacity). some are classic mutations (translocations, etc.) others have no characteristic cytogenetic abnormalities

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
Q

lukemia

A

malignant cells from bone marrow are in the bloodstream

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
26
Q

lymphomas

A

extramedullary collections of malignant lymphoid cells (involving lymph nodes or organs)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
27
Q

what are the two classifications of lukemia?

A

acute or chronic. acute=cells are immature, progression is rapid. chronic=cells are more mature, more indolent course

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
28
Q

hemostasis

A

arresting of bleeding, allows blood to clot in response to damaged vessels. due to platelets. results from complex interactions btw platelets, endothelial lining of bv, and coagulation factors in response to endothelial disruption

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
29
Q

how many platelets can a megakaryocyte produce?

A

5000

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
30
Q

complete blood count began as what?

A

a measurement of Hg and cellular components of peripheral blood.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
31
Q

hemoglobin is measured where?

A

in vitro-RBC is lysed and Hg is converted to a spectrometer friendly form. most techniques use cyanmethhemoglobin (absorbance=525/540nm). shows a linear relationship btw light absorption and concentration of a sample

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
32
Q

hematocrit is a measure of what?

A

how much of a sample is occupied by RBCs. is a %. done with formula: %=RBCxMCV

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
33
Q

physiologic variables affect one’s RBC’s include what 3 things?

A

age, sex, altitude

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
34
Q

aperture impedance

A

Coulter principle. Counts RBC, WBC, platelets. an electrical current is run across an aperture of known size—>cell or particle passes through—>current flow changes—>voltage surges—>surge size tells you what size it is. number of pulses tells you how many cells/particles. measures size of nucleus and cytoplasmic granularity

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
35
Q

what are the x and y axes of an aperture impedance histogram?

A

x=range of pulse magnitudes, y=number of events

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
36
Q

what can cause inaccuracy in aperture impedence

A

multiple cells enter at once

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
37
Q

light scattering techniques

A

collect forward, narrow/wide angle scattered light. estimates size of a cell based on the scatter (measures cross sectional diameter).

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
38
Q

erythrocyte indices

A

calculations for size, content, Hgb concentration of red cells. can help characterize anemias. Healthy=little variation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
39
Q

Mean Corpuscular Volume (MCV)

A

average volume of red cells. derived from height of voltage pulse, calculated with Hct=MCVx RBC (RBC and HCT are determined manually—> HCTx10/RBC)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
40
Q

mean corpuscular hemoglobin

A

MCH is weight of Hgb of average red cell. calculated from MCH=Hgb/RBC

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
41
Q

mean corpuscular hemoglobin concentration (MCHC)

A

average concentration of Hgb in a volume of packed red cells. MCHC=(Hgb/Hct)x100

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
42
Q

Red cell distribution width (RDW)

A

measure of variation in size of red cells and is proportional to the width of the measured histogram

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
43
Q

reticulocytes

A

immature, anucleate RBC that still have RNA, ribosomes, organelles (enable continued Hg production). Bone marrow 3-4 days—>released to peripheral blood 1-2 days—> lose RNA and organelles—>mature RBC

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
44
Q

what stains RNA, ribosomes, organelles in the reticulum?

A

Supravital staining (brillant cresyl blue, methylene blue)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
45
Q

nucleated RBCs

A

nucleated RBCs/100 WBCs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
46
Q

what is thrombocytopenia?

A

too few platelets

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
47
Q

what is thrombocytosis?

A

too many platelets

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
48
Q

what is thrombocythemia?

A

neoplastic expansion of platelets

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
49
Q

optical platelet counting

A

high angle and low angle scatter signals are combined fore each cell. transformed into volume plotted on vertical axis/refractive index values on horizontal to give a platelet scattergram

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
50
Q

combination of impedance and optical counting

A

impedance channels are used as defaults, but a fluorescent channel is backup when there is an abnormality.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
51
Q

platelet measurements are made how?

A

forward scatter for size, side scatter for internal structure, fluorescence for RNA/DNA stain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
52
Q

labeled-platelet counts

A

counted by measuring green fluorescence form FITC on monoclonal antibody in a reagent. Binds the CD61 antigen found on all normal platelets. useful when there’s lots of RBC/WBC fragments

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
53
Q

when do white cell counts and differentials stop varying/changing?

A

after puberty

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
54
Q

what is a sheath flow-based counting system?

A

enable passage of single cells through a sensing zone where multi-parameter analysis can happen when several sensors info is combined

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
55
Q

flow cytometry and light scatter for WBC counts

A

determined with flow cytometry+semiconductor laser. cell info is obtained with forward light scatter for volume, lateral for internal structure, fluorescent light for RNA/DNA info. produces scattergram

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
56
Q

cytochemistry and light scatter

A

peroxidase channel uses cytochemical rxn to produce black rxn. product. neutrophils, eosinophils, monocytes, lymphocytes fall into 4 clusters (separated by electronic thresholds)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
57
Q

what is a blood smear made from?

A

EDTA anti coagulated blood to prevent artifact. observe at low then high power.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
58
Q

what is red cell morphology on a smear?

A

little size/shape variation, well spread,

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
59
Q

White cell morphology on a smear?

A

concentrated at the end of the film

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
60
Q

neutrophils morphology

A

acidophilic with fine granules, clumped chromatin in nucleus divided into 5 lobes. too few lobes-neutropenia. too many lobes-neutrophilic.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
61
Q

lymphocyte morphology

A

scant cytoplasm, round nucleus, dense chromatin. most abundant WBC from age 2-8. too few=lymphopenia, too many=lymphocytosis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
62
Q

monocyte morphology

A

largest cells, irregular lobulated nucleus, ample grey-blue cytoplasm, azurophilic granules, outline of cytoplasm is irregular, vacuoles. too few=monocytopenia, too many=monocytosis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
63
Q

eosinophil morphology

A

larger than neutrophils, bi-lobed nucleus, larger spherical granules, count is constant in life. too many=eosinophelia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
64
Q

basophil morphology

A

similar in size to neutrophils, nucleus obscured by purple-black-coarse granules, least abundant. too many=basophilia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
65
Q

anemia

A

insufficient RBC mass to deliver oxygen to peripheral tissues. defined by measuring hemoglobin concentration (Hgb), hematocrit (Hct), RBC

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
66
Q

_______ have lower Hgb and Hct values than men due in part to more tenuous iron stores.

A

menstruating women

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
67
Q

what lab measurements are used to define anemia?

A

Hgb, Hct, RBC count, MCV, MCHC, rDW, WBC count, differentia of various types of WBC (%)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
68
Q

what stain is used to observe red cell morphology changes?

A

Wright’s stain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
69
Q

reticulocytes can be identified by presence of _______ in cell for 1st day in circulation.

A

mRNA. only peripheral cell where you can routinely evaluate production by quantitating # of young cells in circulation. counted as % of 1000 red cells counted.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
70
Q

what is the normal % of reticulocytes in the blood?

A

.4-1.7%. increased is when it’s 3.5-5 fold greater than this.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
71
Q

reticulocyte index is useful for correcting reticulocyte counts fro red cell concentration and _________.

A

stress reticulocytosis. normal RI should be between 1 and 2 for a healthy individual.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
72
Q

what are the stress factors for a reticulocyte count?

A

1.5 (mild anemia>9gm/dl); 2.0 (6.5-9); 2.5 (severe

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
73
Q

what does and RI >2 with anemia indicate?

A

loss of RBC leading to increased compensatory production of reticulocytes to replace lost RBC.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
74
Q

in anemias that develop over weeks, ________ w/in cells increases to make oxygen dissociation more efficient to compensate for low oxygen carrying capacity.

A

2,3-DPG. however, if it develops acutely, there is not enough time to make this compensatory mechanism

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
75
Q

what are some symptoms of anemia?

A

shortness of breath, fatigue, rapid heart rate, dizziness, claudication, pain with exercise, pallor

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
76
Q

Know his freaking scheme for anemia

A

seriously, he’s only shown it to you a million times.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
77
Q

is anemia associated with other hematologic abnormalities? YES (means what?)

A

bone marrow examination to look for: leukemia, aplastic anemia, myelodysplasia, myelofibrosis, myelophthisis, megaloblasitc anemia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
78
Q

is anemia associated with other hematologic abnormalities? NO (means what?)

A

ask next, is there an appropriate reticulocyte response to anemia?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
79
Q

is there an appropriate reticulocyte response to anemia? YES (means what?)

A

is there evidence of hemolysis? (yes or no) increased bilirubin/lactic dehydrogenase, decreased haptoglobin, hemosiderin in urine

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
80
Q

is there an appropriate reticulocyte response to anemia? NO (means what?)

A

ask: what are the RBC indices?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
81
Q

is there evidence of hemolysis? YES (means what?)

A

evaluate for cause of hemolysis

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
82
Q

is there evidence of hemolysis? NO (means what?)

A

evaluate for hemorrhagic causes of anemia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
83
Q

MCV>100

A

evaluate for macrocytic anemia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
84
Q

MCV 80-100

A

evaluate for normocytic anemia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
85
Q

MCV <80

A

evaluate for microcytic anemia

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
86
Q

basic concepts of biochemistry/distribution of iron that are important for iron deficiency anemia

A
  1. iron exists in 2 valence states, ferric and ferrous. activity depends on state.; 2. in aqueous solutions Fe forms insoluble hydroxides unless bound to a protein/compound; 3. Fe salts are more soluble than low pH; 4. Fe balance in body is controlled by absorption, there are no active mechanisms for excretion; 5. losses of Fe each day are small (skin/mucosal exfoliation, urine, menstruation)
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
87
Q

where is the majority of iron contained?

A

hemoglobin (65%). 6% is in myogolobin, 25% is in ferritin and hemosiderin (storage forms of iron). v. small amount is bound to transferrin. remainder (

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
88
Q

iron absorption

A

goes from stomach (pH and gastroferritin optimize solubility)—>duodenum—>brush border of mucosal cell is where dietary non-heme enters—>converted to ferrous iron by DCYTB—> enters cell through divalent transporter—>stored/transported across bask-lateral membrane

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
89
Q

what increases intraluminal absorption of iron?

A

presence of protein, vitamin C (for valence state)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
90
Q

what decreases absorption of iron?

A

phytates, oxalates, other food constituents cause it to precipitate and be less biologically available

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
91
Q

iron cycle

A

iron is bound to transferrin—>goes to marrow and maturing normoblasts—>transferrin receptors on cells are bound—>normoblast incorporates it into hemoglobin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
92
Q

transferrin

A

84kDa plasma protein made in liver. binds iron in ferric form

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
93
Q

what happens to iron in dead RBCs?

A

macrophages turn cells over in spleen, and sequester iron in ferritin stores.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
94
Q

what is the ferritin molecule structure?

A

coat made of 24 alternating H and L chains. center has ferric salts and 4500 atoms of iron can be held in 1 ferritin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
95
Q

hepcidin

A

25 aa peptide mad in liver in response to high iron intake, inflammation, infection.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
96
Q

what happens when hepcidin is increased?

A

plasma flow from stores goes down, iron saturation and plasma iron decrease, erythropoiesis goes down

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
97
Q

what happens when hepcidin is decreased?

A

binds to ferroportin, degrades it. iron export out of cell goes down, iron accumulates in ferritin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
98
Q

transferrin receptor provides ______ for the iron cycle

A

direction. transferrin enters cell through clathrin coated pit to make endosomes. become acidified, iron exits endosome through DMT1 to go to storage sites. Transferrin returns to surface

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
99
Q

what are the general characteristics of iron deficiency?

A

decreased Hg, decreased cell proliferation, mild hemolytic component (cell rigidity), mildly defective muscle performance, neurophysiological disfunction, nail ridges, upper gastric involvement, immune dysfunction

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
100
Q

how does iron deficiency develop?

A

excessive losses, failure to accumulate iron, on-going losses/inability to gain iron during growth

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
101
Q

steps of iron depletion:

A
  1. iron ferritin levels diminish; 2. iron deficient erythropoiesis; 3. overt anemia
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
102
Q

how do you diagnose anemia?

A

start with a history, and look a the various symptoms, look at lab tests

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
103
Q

differential diagnosis of anemia

A

anemia of chronic inflammation/infection, anemia of chronic disease, thalassemia, sideroblastic anemias

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
104
Q

how do you replace iron?

A

iron salts orally, intramuscular/iv route when absorption altered/compliance is an issue. slowly normalizes, serum iron responds quickly, normal RBCs in 3-5 days.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
105
Q

do you stop iron treatment once Hg has reached normal levels?

A

NO! you need to replenish ferritin stores, so continue for a while after (deficient cells survive 3 months, so need to support)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
106
Q

what is iron overload?

A

increase in body burden of iron beyond the norm. can be caused by increased intake in diet, mutation in HLApH gene, repeated transfusions for anemia.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
107
Q

what are the organs damaged by iron overload?

A

heart, liver, endocrine organs

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
108
Q

how do you treat iron overload?

A

therapeutic phlebotomy, chelation (Desferal)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
109
Q

each red blood cell contains ______ molecules of Hg.

A

280 million

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
110
Q

what is the predominant form of hemoglobin in adults?

A

A (alpha 2, beta 2)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
111
Q

absence of what chain is incompatible with life?

A

lack of alpha globin chains

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
112
Q

describe the numbers of amino acids in alpha and beta chains.

A

141 aa for alpha, 146 aa in beta globin

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
113
Q

where does heme link to a histadine?

A

on the 87 on alpha, and the 92 on gamma, beta, s chain

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
114
Q

how is the delivery of oxygen to tissues accomplished by Hg?

A

through allosteric regulation. (configuration changes allow different binding affinities)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
115
Q

what is a way to quantify the difference in oxygen affinity?

A

by P50. partial pressure of oxygen where oxygen protein is 50% saturated. P50 for Hg is 27mmHg, myoglobin is 2.75 mmHg

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
116
Q

basic shape of the O2 dissociation curve mnemonic (pp-%).

A

30-60, 60-90, 40-75

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
117
Q

ph of Hg oxygen affinity

A

affinity increases over pH range of 6-8.5. O2 held more tightly in alkaline situation, easily released when there is a lower pH. Bohr effect

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
118
Q

hemoglobins oxygen affinity varies ______ with temperature so that at higher temp, more O2 unloaded, less bound by Hg.

A

inversely

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
119
Q

2.3-biphosphoglycerate (2,3-BPG)

A

biproduct of the aerobic glycolytic pathway. present in red cells at concentration of ~5mmol/L

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
120
Q

chromosome 16 contains the ___ genes, with 2 copies of the _ globin gene itself.

A

alpha-like, alpha

121
Q

beta like genes and beta globin chain and variants are on chromosome __.

A

11

122
Q

what are the 3 hemoglobins that are present only btw. weeks 4-14 gestation?

A

Hemoglobin Gower 1 and 2 and Portland. All have higher affinity O2 than HgA

123
Q

what predominates at 8 weeks gestation?

A

fetal hemoglobin. Bohr effect increased by 20% in fetal Hg.

124
Q

tell me the ratios of HgF and HgA when a baby is born:

A

65-95% F, 20% A

125
Q

hemolytic anemia is caused by variants altering _______ affinity.

A

Hg-O2. unstable molecules are also called Heinz body anemia

126
Q

what are Heinz bodies?

A

precipitated, denatured Hg.

127
Q

when is erythrocytosis is generally found when?

A

in people with high affinity hemoglobins b/c O2 delivery to tissues is reduced, causing increased erythropoeitin release from kidneys, stimulating RBC production.

128
Q

Hemoglobin Zurich has a ________ point mutation that doesn’t affect oxygen binding, but does increase CO binding.

A

single.

129
Q

what results if iron binds Hg when it is in ferric form?

A

methemoglobinemia. can occur because of too much methemoglbin production or b/c of reduced methemoglobin production

130
Q

how is methemoglobin produced?

A

oxidation via free radicals, hydrogen peroxide, nitric oxide, OH-. can also occur with drug exposure (anesthetics, nitrates, etc.)

131
Q

what is the most common cause of methemoglobinemia?

A

hereditary causes, most commonly the homozygous deficiency of cytochrome b5 reductase. also could be a mutation in Hg that causes you to make HgM. causes you to be cyanotic

132
Q

what color is methemoglobinemia blood?

A

dark red/ chocolate/ blue-brown, doesn’t change with oxygen exposure

133
Q

_______ can be given by IV to provide an artificial electron acceptor for reduction of methemoglobin via NADPH-dependent pathway, giving results in ~1 hour.

A

methylene blue.

134
Q

when is cyanosis visually perceptible?

A

when reduced Hg exceeds 3 g/dL, O2 saturation below 85%.

135
Q

how does a pulse oximeter work?

A

uses photo detectors with 2 light diodes that measure pulsatile flow

136
Q

platelets

A

clotting factor of the blood. 7-10 days life span in peripheral circulation, 200 billion made per day

137
Q

embryonal stage hematopoiesis

A

primitive blood cells are produced in yolk sac. finished by month 3

138
Q

fetal stage hematopoiesis

A

months 2-7 liver and spleen are the sites of hematopoiesis. by birth its established in marrow

139
Q

post natal hematopoiesis

A

marrow cavity is hematopoietically active. as age progresses, it becomes more localized in axial skeleton. by 18-20 years 90% of marrow is in vertebrae, pelvis, sternum, ribs, skull.

140
Q

extramedullary hematopoeisis

A

hematopoiesis outside of marrow after birth. very weird and wrong.

141
Q

myeloid

A

all non-erythroid, non lymphoid cells (eg: granulocytes, monocytes, megakaryocytes, platelets, etc)

142
Q

lymphoid

A

T, B, NK cells and their precursors

143
Q

self renewal in hematopoiesis

A

a dividing stem cell can differentiate in the process, so this process produces daughter cells that are unchanged from the original. It does not proliferate but can at a later time

144
Q

mutipotential hematopoeitic stem cell (HSC)

A

mother of all blood cells, generates lymphoid and myeloid cells. can self renew or become a pluripotent stem cell

145
Q

pluripotential stem cells/colony forming units (CFU)

A

CFU-GEMM is mother of all non-lymphoid blood cells. CFU-L is the mother of all lymphoid cells. can self renew or become progenitor cells

146
Q

progenitor cells

A

self renewal is limited, and they commit to differentiating at various lineages.

147
Q

Burst Forming Unit Erythroid (BFU-E)

A

progenitor cell that becomes CFU-E. comes from the exuberant colonies. can make precursor cells

148
Q

precursor cells

A

recognizable, maturing cells in marrow specimens. can divide up to a point, but not self-renew. become mature, functional cells in peripheral blood, lymphoid organs, reticuloendothelial system

149
Q

amplification

A

self renewal. few stem cells can become billions each day

150
Q

bone marrow vasculature

A

arteries go through the marrow, branching in to capillary-venous sinuses. these are composed of endothelial/basement memb/adventitial layer. these flow into a central vein into systemic circulation. passage of cells into the sinuses is selective-only mature ones can move out.

151
Q

stromal elements play a key role in _________.

A

hematopoiesis. include endothelial cells of C-V sinuses, reticular cells of the adventitia, fibroblasts, lymphocytes, macrophages, adipocytes, extracellular matrix

152
Q

hematopoietic growth factors (HGF)

A

man different types exist, work on many target lineages, made by different cell types

153
Q

erythropoietin (epo)

A

made by kidney cells during hypoxia. promotes erythropoiesis

154
Q

thrombopoietin (tpo)

A

promotes megakaryopoiesis

155
Q

granulocyte-monocyte colony stimulating factor

A

GM-CSF. promotes granulopoiesis and monopoiesis

156
Q

granulocyte colony stimulating factor (G-CSF)

A

promotes granulopoiesis

157
Q

monocyte colony stimulating factor (M-CSF)

A

promotes monopoiesis

158
Q

interleukin-5 (IL-5)

A

promotes production of eosinophils

159
Q

interleukin-3 (IL-3)

A

promotes production of basophils

160
Q

describe steps of erythrocyte maturation

A

pronormoblast—>basophilic normoblast—>polychromatophilic normoblast—>orthochromatic normoblast—>reticulocyte—>erythrocyte

161
Q

what characterizes erythrocyte maturation?

A

chromatin condenses and loses parachromatin, the nucleus degrades pyknotsicly, the pyknotic nucleus is extruded and an erythrocyte is formed, hemoglobin is accumulated and the organelles are lost. eventually it can no longer replicate

162
Q

pronormoblast

A

first erythroid precursor. 18um wide. nucleus has fine, granular chromatin and 1-2 nucleoli. cytoplasm has lots of RNA so it’s very blue

163
Q

basophilic normoblast

A

cytoplasm is basophilic-but a lighter perinuclear halo can be around. nuclear chromatin is coarser and condensed. smaller- 12-14 um.

164
Q

polychromatophilic normoblast

A

10-12 um. starting to accumulate Hg. Hg+RNA makes it look purple-blue in cytoplasm. nucleus is smaller with chunky chromatin

165
Q

orthochromatic normoblast

A

8-10 um. cytoplasm is red-orange from Hg. v. small and shrunken nucleus

166
Q

reticulocyte

A

anucleate cell, with ribosomes and mitochondria. can be identified after supra vital staining-since it causes mitochondria and ribosomes to condense into strands

167
Q

erythrocyte

A

reticulocyte ribosomes make Hg for 2-3 days and then they degrade, resulting in a a mature erythrocyte. 7-8um. biconcave disc.

168
Q

list the steps of granulocyte maturation

A

myeloblast—>promyelocyte—>myelocyte—>metamyelocyte—>band—>segmented granulocyte (seg)

169
Q

what features characterize granulopoeisis?

A

the nucleus matures with chromosome condensation, the nucleoli are lost, and the nucleus indents to eventually segment. primary and secondary cytoplasmic granules are acquired. eventually the ability to replicate is lost by the metamyelocyte stage

170
Q

myeloblast

A

15um. 1st precursor. high nuclear:cytoplasmic ratio, fine chromatin, 1 or more nucleoli, blue cytoplasm w/ lots of RNA. no granules

171
Q

promyelocyte

A

20um. chromatin are condensed/coarse. nucleoli are present. has a variable # of large purple granules. blue cytoplasm

172
Q

myelocyte

A

15um. lavender secondary granules smaller than primary granules, large golgi, less granules than promyelocyte, condensed nucleus with coarse chromatin. last precursor that can divide

173
Q

metamyelocyte

A

14-16um. lots of secondary granules that make it look pinkish purple, obscure primary granules (or they may be absent). nuclear chromatin is condensed and coarse and the nucleus has an indent (less than 1/2 the diameter of the nucleus)

174
Q

band

A

13 um. horseshoe shaped nucleus. lots of secondary granules

175
Q

segmented neutrophil

A

same size and cytoplasmic properties as band. nucleus is segmented into 2-5 lobes connected by strands

176
Q

eosinophils

A

13um. cytoplasm is full of large orange-red granules. nucleus has heavily condensed chromatin, segmented into (2) round oval lobes.

177
Q

basophils

A

10 um. lobular, non-segmented nucleus that is obscured by blue-purple granules.

178
Q

list the steps of megakaryocytic maturation

A

megakaryoblast—>promegakaryocyte—>megakaryocyte—>platelet

179
Q

what is megakaryocyte maturation characterized by?

A

dna undergoing repeated doublings (endoreduplication) to form a multilobulated nucleus wi/ around 32 sets of chromosomes. the cytoplasm is filled with granules and a network of membranes allows it to make platelets that it sheds into the vascular sinuses.

180
Q

megakaryoblast

A

20-30um. large, round/indented nucleus with nucleoli and rim of basophilic cytoplasm. hard to differentiate from other blasts

181
Q

promegakaryocyte

A

lobulated nucleus with condensed chromatin. granules are in the cytoplasm give an intense blue

182
Q

megakaryocyte

A

lobulated, endoreduplicated nucleus with lots of cytoplasm that is granular and purpleish

183
Q

platelet

A

megakaryocyte extends membrane into the lumen of the sinus. chunks break off and float away. 2-4 um, granular, purplish

184
Q

list the steps of monocyte/macrophage development

A

monoblast—>promonocyte—>monocyte

185
Q

what characterizes monocyte maturation?

A

nucleus goes from round and indented to variable and irregular. peroxidase-positive lysosomal granules and vacuoles appear in the cytoplasm, and monocytes travel to the connective tissue to become macrophages.

186
Q

monoblast

A

16um. indented nucleus with fine chromatin and nuclei. blue cytoplasm with no granules.

187
Q

promonocyte

A

16-18 um. indented nucleus with condensed chromatin and one or more nucleoli. red purple granules are in the cytoplasm

188
Q

monocyte

A

15-18um, largest in peripheral blood. varied nuclei shape. no nucleoli, cytoplasm is bluish with “ground-glass” appearance. scattered red purple granules

189
Q

cellularity of bone marrow means what?

A

portion that is hematopoietically active. the non-active part is occupied by stream elements (fat). Decreases with age. should be equal to 100-age

190
Q

myeloid erythroid ratio (M:E ratio)

A

granulocytic:erythroid precursors, 3:1

191
Q

maturation

A

precursors should mature, so it should look heterogeneous. lack of maturation is a homogenous apperance

192
Q

marrow should be free of _________ findings.

A

abnormal. includes things like fibrosis, metazoic tumor, granulomas

193
Q

pathophysiology of anemia of chronic disease

A

common mechanisms: malignancies/sepsis—TNF decreases Fe stores, decreases EPO, INF-beta inhibits erythropoeisis; chronic infection/inflammation—IL-1 diminishes Fe mobilization/EPO production, INF-gamma inhibits erythroid. Results are related to inability to use irons stores, less EPO, decreased erythropoiesis.

194
Q

what do all anemias of chronic disease have?

A

reticulocytopenia. characteristically Fe is decreased, TIBC is normal to decreased and ferritin is normal to increased, EPO low

195
Q

lead intoxication anemia

A

mild/moderate anemia, decreased reticulocyte count, microcytosis, basophilic stippling, increased Zn protoporphyrin. treat with chelation

196
Q

renal insufficiency anemia

A

not seen until kidney function is

197
Q

thyroid disorder anemia

A

normochromic, normocytic, microcytosis or macrocytosis. treat with hormone repalcement

198
Q

adrenal insufficiency anemia

A

normochromic, normocytic

199
Q

_______ and ______ are critical co-factors for normal hematopoiesis.

A

folic acid and vitamin B1 (cobalamin). the metabolite of folic acid donates a methyl group in the synthesis of methionine from homocysteine cogenerate tetrahydrofolate. this is important in the steps of DNA synthesis.

200
Q

deficiencies in folic acid and vitamin b12 affect the _______ process of RBC precursors in marrow.

A

maturation. cells will increase in size and arrest in S phase then destroy themselves

201
Q

do plants contribute B12 to the human diet?

A

NO!

202
Q

where is vitamin B12 released upon ingestion?

A

in the acidic stomach. IF secreted by parietal cells binds it and then in the terminal ileum it is absorbed and released from IF, binding transcobalamin binding protein 2 (Tc2). It is then transported to the liver for storage or to the marrow for use

203
Q

what is the most common cause of B12 deficiency?

A

pernicious anemia

204
Q

pernicious anemia

A

caused by autoimmune destruction of IF producing gastric parietal cells. common in older population.

205
Q

where is dietary folate absorbed?

A

in the jejunum. It is hydrolized, reduced, methylated before distribution to tissues or liver for storage.

206
Q

what is the most common cause of folate deficiency?

A

inadequate dietary intake. other causes are malabsorption or increased demand, alcohol consumption.

207
Q

how long does it take to develop folate and B12 deficiencies?

A

folate is weeks, B12 is months

208
Q

what hematologic changes do you se with megaloblastic anemia?

A

M:E ratio is altered (more erythroid produced), marrow precursors have large/immature nuclei, anemia is variable in peripheral blood, macrocytosis, retic count is decreased (

209
Q

________ involvement is classic in B12 deficiency

A

neurologic. sensory abnormalities, loss of proprioception, ataxia, spasticity, gait disturbances, positive babinski reflex may follow

210
Q

if you treat an undiagnosed B12 deficiency with large doses of folic acid, what happens?

A

the neurologic damage can be exacerbated

211
Q

what tests show B12 and folate deficiencies?

A

cobalmin (but must be aware won’t show deficiencies in tissues), serum folate, red folate, plasma homocysteine levels (more sensitive), methylmalonic acid levels

212
Q

once B12 deficiency is diagnosed, it is important to know the ______.

A

cause.

213
Q

shilling test

A

1ug of cobalamin given orally, IF combines with it and it eventuallyy enters bloodstream. Flushing dose give via IM at 2 hours to saturate trancobalamins. 5-35% of the absorbed Cbl is exceed in 24 hours due to being “wahshed out”

214
Q

how do you treat B12 and folate deficiencies?

A

inject/oral B12. 1mg/day of oral Folate or parenterally.

215
Q

thalassemia is a condition where there is ______ of a hemoglobin chain due to a variety of mutations that result in _____ or _____ function of the globin gene.

A

underproduction, poor or absent

216
Q

alpha thalassemia

A

alpha chain is underproduced due to absence of 1 or more of 4 genes that control production. common Asian, African Mediterranean descent

217
Q

beta thalassemia

A

beta globin chain is underproduced, due to point mutations resulting in dysfunctional genes. HbE is structurally abnormal hemoglobin due to point mutation (unstable), lower in RBC due to the instability causing changes. mediterranean, african, SE asian descent.

218
Q

list the consequences of thalassemia defects:

A

low concentration of Hg in RBC, imbalance in chain production, increase in other hemoglobins

219
Q

RBCs in thalassemia and HgE are ______, and have ______ MCHC with an excess of membrane, giving them a “target cell” shape.

A

smaller (low MCV), lower

220
Q

underproduction of one globin chain results in ________ of the other globin chain.

A

unmatched excess. unused chains can precipitate, denature and oxidize, damage cell membranes and make RBCs more fragile.

221
Q

diagnosis of Beta thalassemia is based on recognition of ___ and ____ relative to underproduced HbA1.

A

HbA2, HbF

222
Q

if a person with Beta thalassemia becomes iron deficient, are you more or less likely to catch their thalassemia?

A

less. HbA2 values will appear normal instead of high due to the iron deficiency. you must be sure they aren’t iron deficient before starting Hg electrophoresis to evaluate for thalassemia

223
Q

anemia with some increase in reticulocyte count in relation to chronic hemolytic anemia

A

degree will vary with thalassemia severity. Cooley’s anemia needs regular transfusions to sustain life. others may not need transfusions till later/or at all

224
Q

chronic hemolytic anemia has:

A

anemia with increase in reticulocyte count, abnormal peripheral smear, splenomegaly, abnormal chemistry profile

225
Q

how does bone marrow attempt to produce adequate RBC mass with thalassemia?

A

bone marrow expands to fill with RBC precursors even though they are ultimately fragile and destroyed.

226
Q

people with severe forms of thalassemia ______ absorption of iron from the diet in response to anemia.

A

increase.

227
Q

anemia, increased metabolism and ineffective erythropoiesis and encocrinopathies contribute to ______ growth and development.

A

delayed. can result in short stature and delayed puberty.

228
Q

nearly 2/3 of patients with ________ anemia have abnormal endocrine function

A

Cooley’s. pituitary is affected, hypothyroidism/impaired glucose may occur (40-60% of patients)

229
Q

persons with chronic hemolytic anemia (inc. thalassemia) are at risk for __________.

A

pulmonary hypertension. more common in splenectomy patients

230
Q

how do you treat thalassemias?

A

transfusion support (combined often with chelation therapy and splenectomy), increasing fetal hemoglobin production, and bone marrow transplantation.

231
Q

sickle cell is:

a. autosomal recessive
b. both B-globin genes are mutated
c. there is a single amino acid substitution

D. heterozygosity provides carrier advantage e. all of the above are true

A

All are true!

232
Q

sickle cell disease occurs in people with 2 abnormal __________ genes where at least one of these has the sickle mutation.

A

beta globin. if the other gene also has the sickle cell mutation the disease is sickle cell anemia (HbSS)

233
Q

sickle cell trait

A

occurs in person with 1 sickle cell gene and 1 normal gene. protects against disease devleopment

234
Q

when deoxygenated, sickle hemoglobin polymerizes into _____strand helical fibers that ______ the shape of the RBC into a sickle form or other irregular shape

A

14; distort

235
Q

when does a cell become irreversibly sickled

A

after several deoxygenation-reoxygenation cycles

236
Q

the shape of the sickle RBC results in chronic hemolytic anemia-describe the characteristic changes in lab tests seen with this

A

anemia with compensatory increase in reticulocyte count, increased baseline WBC and platelet count, increased RDW, abnormal peripheral smears (sickle forms, schistocytes/broken cells, polychromasia/blue colored cells, anisocytosis/variation in size, poikilocytosis/variation in shape), abnormal chemistry profile

237
Q

howell jolly bodies

A

small purple dots in RBCs. seen in patients w/o functioning spleen

238
Q

target cells and hemoglobin C crystals

A

red “rods” in RBC, seen in HgSC

239
Q

microcytosis

A

low MCV and target cells in SBthalassemia (+/- versions)

240
Q

what shows up in an abnormal chemistry profile with SCD?

A

increased total/indirect bilirubin, lactate dehydrogenase (LDH) and aspartate aminotransferase as RBCs are lysed

241
Q

what are the implications of chronic hemolytic anemia (SCD)?

A

aplastic crisis, growth retardation/delay, bilirubin gallstones

242
Q

aplastic crisis

A

anything compromising bone marrow ability to produce RBCs can drop Hg quickly. Found via low reticulocyte count. can result from Parvos virus, infection, medication, vitamin deficiencies

243
Q

RBCs in SCD are “_____” due to membrane injury and retention of adhesion molecules on surface.

A

Sticky!!! this results in adhesion of sickled RBCs in microvascular circulation. results in vaso-occlusion, vessel wall injury, endothelial remodeling, vessel narrowing, chronic organ damage

244
Q

what organs are most affected by chronic RBC adhesion/vascular occlusion

A

spleen, CNS, lung, kidney, retina, femoral/humeral heads

245
Q

spleen damage in Chronic RBC adhesion/vascular occlusion

A

large numbers of RBC trapped—>severe anemia and circulatory show occurs; splenic sequestration. results in autoinfarction/destruction of seen by 5 y/o.

246
Q

CNS damage in Chronic RBC adhesion/vascular occlusion

A

up to 10% of children with HbSS have overt large vessel stroke due to chronic injury. learning disabilities and neurologic problems can occur. can be reduced w/blood transfusions.

247
Q

lung damage in Chronic RBC adhesion/vascular occlusion

A

damage to microvessels makes it hard to let blood flow through, resulting in high pressure in pulmonary arteries—pulmonary arterial hypertension. puts strain on R side of the heart

248
Q

kidney damage in Chronic RBC adhesion/vascular occlusion

A

tubules damaged via chronic vaso-occlusion. cannot concentrate urine to avoid dehydration. may have papillary necrosis (ischemia of collecting system) leading to blood in urine. renal insufficiency and permanent scarring/damage of glomerulus common

249
Q

retina damage in Chronic RBC adhesion/vascular occlusion

A

vessels can form abnormally in retina and hemorrhage, leading to detached retina and blindness.

250
Q

other issues and damage in Chronic RBC adhesion/vascular occlusion

A

femoral/humeral head avascular necrosis, joint deterioration, hip/shoulder replacement. skin ulcers, poor healing

251
Q

sickle cell crisis

A

hypoxia, dehydration, inflammation, infection and stressors lead RBCs to sickle and leads to blood vessel damage and constriction—sudden vaso-occlusion. causes severe pain (commonly in arms, legs, chest abdomen).

252
Q

what are other significant acute faso-occlusive complications?

A

hand-foot syndrome (swelling), acute chest syndrome (fluid leaks into lungs), acute multi-organ failure syndrome (renal and liver failure), priapism (ouchie), bone infaction (focal areas sustain ischemia, damaged, necrotic, painful)

253
Q

list the 3 main treatments of SCD:

A

bone marrow transplantation, hydroxyurea therapy (chemo agent that induces fetal hemoglobin), transfusion therapy

254
Q

how long do people with SCD live typically?

A

into their 50/60’s if cared for properly

255
Q

hemolysis

A

decrease in RBC survival or increase in turnover beyond standard norms. determines whether anemia presents acutely or chronically.

256
Q

what are the 2 mechanisms for red cell destruction to exist?

A

turnover w/in vascular space (intravascular) and ingestion/clearance by macrophages of the reticuloendothelial system (RE) (extravascular)

257
Q

red cells undergoing intravascular hemolysis release Hg into __________.

A

circulation. tetramer form of Hg dissociates and binds haptoglobin, which is removed by the liver. Fe can also be oxidized to form methemeoglobin, dissociation of globulin means methane can bind albumin/hemopexin, both of which can be taken up by parenchymal cells and made into bilirubin.

258
Q

in extravascular hemolysis, red cell is ____ by ____ of RE system.

A

ingested, macrophages. heme is separated from globin, iron is stored in ferretin, porphyrin ring is made into bilirubin. bilirubin is made water soluble by glucuronic acid via cytochrome P-450 enzyme in liver. It is then converted to urobilinogen which cycles in gut/liver or is excreted.

259
Q

_______ is _______ if hemolysis is brisk enough o overcome bilirubin processing of liver, leading to increase in unconjugated fraction.

A

bilirubin, increased

260
Q

what else suggests an increase of intravascular hemolysis?

A

decrease in serum haptoglobin levels, hemoglobin in urine or plasma, increase in methane or methealbumin

261
Q

hereditary spherocytosis (HS)

A

familial disorder: anemia, intermittent jaundice, spenomegaly (responds to spelnectomy). loss of plasma membrane and formation of microspherocyte (suceptible to osmotic stress). Spectrin/ankyrin/band 3 weaken cytoskeleton to destabilize lipid layer. this leads to entrapment in spleen. Mostly auto dom, 25% is auto recessive. treat for chronic anemia, splenectomy. can result in aplastic crises and bilirubin stones.

262
Q

glucose 6 phosphate dehydrogenase (G-6-PD) deficiency

A

sex linked recessive. may help with resistance to plasmodium vivid. G-6-PD provides protection against oxidant stress. loss of enzyme early on=denatured Hg attaches to membrane and damages spectrum. resulting deformability means splenic trapping and extravascular hemolysis.

263
Q

Pyruvate Kinase (PK) deficiency

A

second most common enzyme deficiency, most common glycolytic defect. decreases conversion of phosphoenolpyruvate—>pyruvate, results in less ATP. Membrane plasticity down, destruction in spleen. support with folate, transfusion, supportive care

264
Q

autoimmune hemolytic anemia

A

antibodies to universal red cell antigens can cause hemolysis bi intra/extra vascular destruction. Cold and hot.

265
Q

cold antibodies

A

IgG/M bind red cell membrane in cooler areas of body, when they move back into the body they activate complement through C5-9 attack complex, makes holes in membrane. It dissociates at higher temperature and the cell destructs.

266
Q

warm antibodies

A

IgG. bind cell with big affinity. have no/poor complement activating capacity, incites splenic macrophage to do antibody-mediated phagocytosis through Fc receptor. results in extravascular hemolysis

267
Q

what tests are used for autoimmune hemolytic anemia?

A

antiglobulin or Coombs tests for IgG and or complement on cell surfaces. warm=positive DaT, max reaction at 37C, panagglutining w/o antigen specificity. cool=positive DAT, max react at 4C,antigen specifically for I or i

268
Q

the most significant complication of splenectomy is ____ _____ _____, particularly associated with S. pneumonia. This risk is greatest in children

A

overwhelming bacterial sepsis

269
Q

what temp is a trigger that you need to see your doctor if you have had a spenectomy?

A

>38.5C. see immediately for febrile illness

270
Q
A

orthochromic normoblast

270
Q
A

Pronormoblast

271
Q
A

basophilic normoblast

272
Q
A

polychromatophilic normoblast

273
Q
A

reticulocyte

274
Q
A

megakaryocyte

275
Q
A

myeloblast

276
Q
A

promyelocyte

277
Q
A

myelocyte

278
Q
A

metamyelocyte

279
Q
A

band

280
Q
A

segmented neutrophil

281
Q
A

eosinophils

282
Q
A

basophils

283
Q
A

mast cells

284
Q
A

monoblast

285
Q
A

promonocyte

286
Q
A

monocyte

287
Q
A

lymphoblast

288
Q
A

lymphocyte

289
Q
A
290
Q

the freaking chart we have to know

A
291
Q

hemoglobin and myoglobin binding curves

A
292
Q
A

heinz bodies

293
Q

alpha thalassemia table

A
294
Q

beta thalassemia table

A
295
Q

CBC thalassemia lab results

A
296
Q

sickle cell disease table

A
297
Q

Development of Iron deficiency Table

A
298
Q

Newborn Screening Tests table

A