Glycolysis Flashcards
Let’s remind ourselves, what is the point of glycolysis?
Glycolysis is the pathway we use to convert glucose to pyruvate, and it occurs in the cytosol of every cell in the body
First of all, we need to get that glucose into the cell. How do we do it?
With transport proteins.
Insulin stimulates glucose transport into muscle and adipose cells by causing glucose transport proteins (GLUT4) within cells to move to the cell membrane. Doesn’t really affect other organs like the brain, RBCs, or liver.
What is the first thing to happen to glucose in glycolysis and what enzymes are used?
The first thing is to turn glucose to glucose-6-phosphate.
We use the enzymes hexokinase (found in all tissues) and glucokinase (in the liver and pancreas) and we use up our first ATP.
So we’ve made our Glucose 6 phosphate from glucose using hexokinase. Now what is the next step?
The next step is to turn this glucose-6-phosphate to fructose, because glucose has gotten too much attention already. Fructose isn’t that much different from glucose so turning it into fructose-6-phosphate only requires phosphoglucose isomerase.
Alright so now Fructose-6-phosphate has a chance to shine. What happens to this guy?
How come nothing is happening to the second half of this molecule? Let Fructose rein for another around since glucose had two shots.
Using phosphofructokinase 1, we phosphorylate Fructose-6-Phosphate to Fructose 1-6-bisphosphonate.
This step is the second to use ATP, but is the first committed step of glycolysis.
What do you mean we committed?! What happens next to our newly formed fructose-1-6-bisphosphonate?
Fructose-1-6-bisphosphonate is angry that it committed against its will, and just wants to explode. It breaks down via aldolase to make triose phosphates, glyceraldehyde-3-phosphate, and DHAP.
But in reality, we actually just get two glyceraldehyde-3-phosphates cause we use triose phosphate isomerase to turn DHAP into a second glyceraldehyde-3-phosphate
Great! We have twins! More mouths to feed! What do we do to glyceraldehyde-3-phosphate?
We need to start doing electron stuff. We oxidize glyceraldehyde 3 phosphate with NAD+ and react it with some floating inorganic phosphate to make 1,3-Bisphosphoglycerate and NADH using glyceraldehyde-3-phosphate dehydrogenase, which turns glyceraldehyde 3 phosphate into a carboxyllic acid which forms a high-energy anhydride with inorganic phosphate
Special electron stuff means we need a something fancy
- cysteine residue at the active site is essential
So we did the fancy electron stuff to make 1,3-Bisphosphoglycerate. Now what?
After the electron makeover, 1,3-Bisphosphoglycerate feels fat and wants to slim down, so with the help of phosphoglycerate kinase, it reacts with some leftover ADP to make 3-phosphoglycerate and ATP
What happens with our new slimmed down 3-phosphoglycerate?
Time to take off some phosphates:
- Phosphoglyceromutase to turn 3 to 2
- Enolase to dehydrate the 2-Phosphoglycerate to Phosphoenolpyruvate (PEP) which has a lot of phosphate energy
So now we have this super reactive PEP, what do we do with it?
It reacts with ADP to make pyruvate and ATP as the final reaction using pyruvate kinase
What does a deficiency in pyruvate kinase lead to?
This means we get fewer ATP from glycolysis, so RBCs have less ATP for their pumps, causing a hemolytic anemia. Glycolysis goes backwards a little since it can’t finish and we get a buildup of 2,3-bisphosphoglycerate in the red blood cells, which promotes oxygen release from the cells in a greater extent than usual (decreases affinity of hemoglobin for oxygen)
When is hexokinase most active?
It gets inhibited by its product, glucose-6-phosphate, so it works best when glucose-6-phosphate is being readily utilized.
Glucokinase is also important for our first step in glycolysis and gets used only in the liver and pancreas. When is it most active?
Only after a meal, when insulin levels are high.
It is NOT inhibited by its product, but it is regulated by a glucokinase sequester protein that holds it in the nucleus until glucose levels go up.
Discuss PFK-1, the enzyme that makes our Fructose 6 phosphate fatter
It makes it fatter because it is actually reinforced by its own product. It too is also stimulated when glucose is high and when muscles need ATP.
Discuss the fed vs fasted state in regards to the PFK-1 step that makes our fructose fatter
So after a meal, technically Fructose-6-phosphate is made fatter by PFK-2, not 1. The fatter fructose stimulates the PFK-1 to wake up and start up glycolysis.
When fasting, PFK2 is phosphorylated by protein kinase A (activated by cAMP). This new evil phosphorylated form turns our fat fructose back to fructose-6-phosphate, and since there is less fat fructose, PFK-1 levels drop back down.
In the fed state, insulin is floating around causing phosphatases to dephosphorylate our PFK-2 to cause it to be more ready to make fat fructose and thus stimulate PFK-1