Geometric distribution Flashcards
P( X = x) = ?
P( X = x) = [q^(x-1)] p
X = ?
X : a variable
x = ?
x : the specific drop for the success event
q = ?
probability that event will fail
p = ?
probability of a successful event
mean = μέση τιμή = ?
μ = 1/p
variance = διακύμανση = ?
Var(x) = σ^2 = (1/p) [ (1/p) - 1)] = μ (μ-1)
standard deviation = τυπική απόκλιση = ?
σ = [ Var(x) ]^ 1/2 = (σ^2)^1/2
F(x) = cumulative geometric distribution = αθροιστική γεωμετρική κατανομή = ?
F(x) = P( X <= x) = 1-q^x
P(X < 5) = ?
P(X < 5( = P(X <= 4) (otherwise i cannot use the above formula.
P(X > 12) = ?
P(X > 12) = 1 - P(X <= 12) (apo sxima geometrikis katanomis)
P(X >= 12) = ?
P(X >= 12) = P(X > 11)
P(15 <= X <= 30) = >
P(15 <= X <= 30) = 1 - P(X <= 14) - P(X >= 31) (apo sxima geometrikis katanomis)
P(X > x) = ?
P(X > x) = 1 - P(X > x) = 1 - (1 - q^x) = q^x
P(X >= x) = ?
P(X >= x) = q^(x-1) (iso me to P(X > x) = q^x, apla gia allo x)