General Trigonometry Flashcards
To cover special values, trig identities, inverse trig functions, and domains&ranges. Formulas also included.
Formula for Radians to Degrees
180/pi
Exact Trig evaluations for 30degrees/ pi/6
sin=1/2, cos=rad3/2, tan=1/rad3, cot=rad3, sec=2/rad3, csc=2
Exact Trig evaluations for 45degrees/ pi/4
sin=1/rad2, cos=1/rad2, tan=1, cot=1, sec=rad2, csc=rad2
Exact Trig evaluations for 60degrees/ pi/3
sin=rad3/2, cos=1/2, tan=rad3, cot=1/rad3, sec=2, csc=2/rad3
Finding reference angles in quadrants I-IV
QI: theta=angle, QII: theta=180-angle, QIII: theta= 180+angle, QIV: theta=360-angle
Law of Sines
SinA/a = SinB/b = SinC/c
Law of Cosines
a^2 = b^2 + c^2 -2bcCosA b^2 = a^2 + c^2 -2acCosB c^2 = b^2 + a^2 -2baCosC & CosA = (b^2 + c^2 - a^2) / 2bc CosB = (a^2 + c^2 - b^2) / 2ac CosC = (b^2 + a^2 - c^2) / 2ba
Pythagorean Idetities
sin^2x+cos^2x = 1 1+tan^2x = sec^2x 1+cot^2x = csc^2x
Double Angle Formulas
Sin(2x) = 2sinxcosx Cos(2x) = cos^2x + sin^2x Cos(2x) = 2cos^2x - 1 Cos(2x) = 1 - 2sin^2x Tan92x) = (2tanx)/(1-tan^2x)
Reduction Formula
Cos^2x = (1+cos2x)/2 Sin^2x = (1-sin2x)/2 Tan^2x = (1-cos2x)/(1+cos2x)
inverse trig functions (arc=inverse)
Domains & Ranges
1. arcsin 2. arccos 3. arctan
4. arccot 5. arcsec 6. arccsc
- [-1,1] [-pi/2, pi/2]
- [-1,1] [0, pi]
- (-i, i) (-pi/2, pi/2)
- (-i, i) (o, pi)
- (-i, -1]U[1, i) [0, pi/2) U (pi/2, pi]
- (-i, -1]U[1, i) [-pi/2, 0) U (0, pi/2]
for all:
- cot-1cotx =x 2. cotcot-1x =x
- sec-1secx =x 4. secsec-1x =x
- csc-1cscx =x 6. csccsc-1x =x
- xE (0,pi)
- xE (-i, i)
- xE [0, pi/2) U (pi/2, pi]
- xE (-i, -1] U [1, i)
- xE [-pi/2, 0) U (0, pi/2]
- xE (-i, -1] U [1, i)
RANGE of inverse function =
DOMAIN of restricted function
magnitude of lUl (vector)
rad a^2 + b^2
vector U + vector V =
(a + c, b + d)