Further Statistics Flashcards
1
Q
- Discrete: Expectation
A
E(X) = mean = μ = ∑xP(X=x)
2
Q
- Discrete: Variance
A
Var(X) = σ^2 = square of standard deviation Var(X) = E(X-E(X))^2) = the mean of the differences between the values and the mean all squared Var(X) = E(X^2) - (E(X))^2 = the mean of the squares minus the square of the means
3
Q
- Discrete: Coding mean - Y = g(X); Y = aX + b
A
E(g(X)) = ∑g(X)P(X=x) E(aX+b) = aE(X) + b
4
Q
- Discrete: Example - Y=X/50 -3. Find E(X) given E(Y)=5.1
A
Y = X/50 -3 X = 50Y + 150 E(X) = E(50Y + 150) = 50E(Y) + 150 = 50*5.1 +150 = 405
5
Q
- Discrete: Coding variance - Y = aX + b
A
Var(Y) = a^2Var(X)
6
Q
- Discrete: Example - Y=X/50 -3. Find Var(X) given Var(Y)=2.5
A
Var(Y) = (1/50)^2Var(X) Var(X) = 2500*Var(Y) = 6250
7
Q
- Discrete: E(X + Y) =
A
E(X+Y) = E(X) + E(Y)
8
Q
- Poisson: Distribution parameter and probability function
A
X ∼ Po (λ) per unit time/space, where λ is the rate
P(X=x) = ((e^-λ)*λ^x)/x!
9
Q
- Poisson: Conditions for events
A
Independent
Rare/occur singly in time or space
Constant rate - mean number proportional to given interval
10
Q
- Poisson: Combining two independent variables (Z = X + Y, where X∼Po(λ) and Y∼Po(μ))
A
X + Y ∼ Po(λ + μ)
11
Q
- Poisson: Mean and variance
A
E(X) = Var(X) = λ
12
Q
- Poisson: Binomial approximation (mean)
A
X ∼ B (n, p)
X ∼ Po (λ) where λ = np
Because E(X) = np (binomial) = λ (poisson)
13
Q
- Poisson: Binomial approximation (conditions)
A
Var(X) = np(1-p) (binomial) = λ (poisson)
λ is defined as np (so 1-p ≈ 1 ∴ p must be small)
Conditions = large n, small p
14
Q
- Geo/NB: Geometric distribution and parameter
A
X ∼ Geo (p), where p is the probability of success and X is the number of trials needed to get one success.
15
Q
- Geo/NB: Geometric probability function
A
P(X=x) = p(1-p)^(x-1)