Fundamental Identities Flashcards
Memorize the Reciprocal Quotient Pythagorean Even/Odd Cofunction
<p>Reciprocal:</p>
<p>sin ø =</p>
<p>1 / csc ø</p>
<p>Reciprocal: sin ø = </p>
<p>1 / csc ø </p>
<p>Reciprocal: cos ø = </p>
<p>1 / sec ø</p>
<p>Reciprocal: tan ø = </p>
<p>1 / cot ø</p>
<p>Reciprocal: csc ø = </p>
<p>1 / sin ø</p>
<p>Reciprocal: sec ø = </p>
<p>1 / cos ø</p>
<p>Reciprocal: cot ø = </p>
<p>1 / tan ø</p>
<p>Quotient: tan ø = </p>
<p>sin ø / cos ø</p>
<p>Quotient: cot ø = </p>
<p>cos ø / sin ø</p>
<p>Pythagorean: sin2 ø + cos2 ø =</p>
<p>1</p>
<p>Pythagorean: 1 + cot2 ø =</p>
<p>csc2 ø</p>
<p>Pythagorean: tan2 ø + 1 =</p>
<p>sec2 ø</p>
<p>Even/Odd:
| cosine is \_\_\_\_\_\_\_\_\_\_\_\_\_ so cos(-ø) =</p>
<p>even; cos ø</p>
<p>Even/Odd
| sine is \_\_\_\_\_\_\_\_\_\_\_\_\_ so sin(-ø) = </p>
<p>odd; -sin(ø)</p>
<p>Even/Odd
| tangent is \_\_\_\_\_\_\_\_\_\_\_\_\_ so tan(-ø) = </p>
<p>odd; -tan(ø)</p>
<p>Even/Odd
| cotangent is \_\_\_\_\_\_\_\_\_\_\_\_\_ so tan(-ø) = </p>
<p>odd; -cot(ø)</p>
<p>Even/Odd:
| secant is \_\_\_\_\_\_\_\_\_\_\_\_\_ so sec(-ø) =</p>
<p>even; sec ø</p>
<p>Even/Odd
| cosecant is \_\_\_\_\_\_\_\_\_\_\_\_\_ so csc(-ø) = </p>
<p>odd; -csc(ø)</p>
<p>Cofunction:
| cos(ø) = </p>
<p>sin(π/2 - ø)</p>
<p>Cofunction:
| sin(ø) = </p>
<p>cos(π/2 - ø)</p>
<p>Cofunction:
| cot(ø) = </p>
<p>tan(π/2 - ø)</p>
<p>Cofunction:
| tan(ø) = </p>
<p>cot(π/2 - ø)</p>
<p>Cofunction:
| sec(ø) = </p>
<p>cos(π/2 - ø)</p>
<p>Cofunction:
| csc(ø) = </p>
<p>sec(π/2 - ø)</p>