FP2 Flashcards
z (sin & cos form )
z = r(cosø+isinø)
where r=√(x^(2)+y^(2)) & ø=argz
z (e form)
z = re^(iø)
where r=√(x^(2)+y^(2)) & ø=argz
z1*z2=?
For complex nums z1=r1(cosø1+isinø1) & z2=r2(cosø2+isinø2)
z1z2 = r1r2(cos(ø1+ø2) + isin(ø1+ø2))
(z1 ⁄ z2)=?
For complex nums z1=r1(cosø1+isinø1) & z2=r2(cosø2+isinø2)
(z1 ⁄ z2) = (r1 ⁄ r2)(cos(ø1–ø2) + isin(ø1–ø2))
lz1*z2l=?
For complex nums z1=r1(cosø1+isinø1) & z2=r2(cosø2+isinø2)
lz1z2l = lz1llz2l
arg(z1*z2)=?
For complex nums z1=r1(cosø1+isinø1) & z2=r2(cosø2+isinø2)
arg(z1*z2) = arg(z1) + arg(z2)
arg((z1 ⁄ z2)=?
For complex nums z1=r1(cosø1+isinø1) & z2=r2(cosø2+isinø2)
arg((z1 ⁄ z2)) = arg(z1) – arg(z2)
z^(n)=?
For complex num z=r(cosø+isinø)
z(^n) = r(^n)(cosnø+sinnø)
z(^n)–(1 ⁄ z(^n))=?
2isinnø
z(^n)+(1 ⁄ z(^n))=?
2cosnø
For (dy ⁄ dx)+Py=Q where P and Q are functions of x, what is the integrating factor and what is the general solution
I.F. = e^(∫P dx)
Find gen solution with
(e^(∫P dx))y = ∫(e^(∫P dx))Qdx + C
PI f(x)=k
λ
PI f(x)=kx
λ+µx
PI f(x)=kx^(2)
λ+µx+vx(^2)
PI f(x)=ke^(px)
λe^(px)
PI f(x)=mcoskx
λcoskx+µsinkx
PI f(x)=nsinkx
λcoskx+µsinkx
PI f(x)=mcoskx+nsinkx
λcoskx+µsinkx
auxiliary equation has TWO REAL DISTINCT ROOTS
y = Ae(^(root1)x) + Be(^(root2)x)
auxiliary equation has TWO EQUAL ROOTS
y = (A + Bx)e(^(root)x)
auxiliary equation has TWO IMAGINARY ROOTS
y = AcosØx + BsinØx
auxiliary equation has TWO COMPLEX ROOTS
y = e^(px)(Acosqx+Bsinqx)
when complex root = p±iq
Work out tangents PARALLEL to initial line- polar coordinates
d/dø(rsinø)=0
Work out tangents PERPENDICULAR to initial line- polar coordinates
d/dø(rcosø)=0