fourier transforms Flashcards
Sufficient conditions for existence fro FT, sine and cosine transform
f is absolutely integrable on the appropriate interval
- FT $(-\infty,\infty)$
- cosine/ sine transform $[0,\infty)$
f and f’ piecewise cont on every finite interval
NOTE: derivation f FT of deriv you require f(x) or f’(x) $\rightarrow 0 $ as $x \rightarrow \pm \infty$
General steps to using FT to solve PDE in u(x,t)
FT ode and initiaol condition to U(a,t)
solve simpler ODE in U(a,t)
IFT back to get U(x,t)
FT of f’(x) and f’‘(x)
FT of f’(x)
$-i\alpha \mathcal{F}f(x)$
FT of f’‘(x)
$-\alpha^2 \mathcal{F}f(x)$
How to know which transform to use
- FT $(-\infty,\infty)$
- cosine/ sine transform $[0,\infty)$
if boundary condition is :
a) a function value -> SINE T
b) derivative -> COSINE T
Sien first and second derivative FT
$$\mathcal{F}_s {f’(x)} = -\alpha \mathcal{F}_c {f(x)}$$
$$\mathcal{F}_s {f’‘(x)} = \alpha f(0) -\alpha^2 \mathcal{F}_s {f(x)}$$
cos first and second deriv FT
$$\mathcal{F}_c {f’(x)} = -f(0) +\alpha \mathcal{F}_s {f(x)}$$
$$\mathcal{F}_c {f’‘(x)} = - f’(0) -\alpha^2 \mathcal{F}_c {f(x)}$$