Formulas Flashcards
Binomial Experiment
- The same experiment repeated a fixed number of times
- Only success or failure
- Repeated trials are independent
Binomial Equation
(x sucess in n trials) C(n,x)p^x1-p^n-x
Probability distribution
0 1 2 3 / 14/55 28/55 12/55 11/55= 1
Expected value
E(x)= x1p1* x2p2 * …nxpn
E^F ^=upsidedown U
Both E and F
EUF
E or F or both
E’
E doesn’t occur
Events that cant occur at same time
mutually exclusive
Basic probability principle
n(e)/n(s)
Union rule for probability
P(EUF)=P(E)+P(F)-P(E^F)
Multiplication principle
m1m2m3…mn m1-ways to make choice 1 m2= ways choice 2
Compliment rule
p(E)=1-P(E’) and p(E’)= 1-P(e)
odds in favor
P(E)/P(E’) 1/3 / 2/3= 1/2 or 1 to 2 1:2
odds in favor
m to n then P(E)= m/m+n P(E’)= n/m+n
Conditional Probability AIB
Probability A given B occured
P (EIF)
P(E^F)/P(F)
p(B^A)/P(A)
n(A^B)/n(A)
Bayes theorem
P(F)P(EIF)
_________
P(F)P(EIF)+ P(F2)P(EIF2)…+P(Fn)P(EIFn)
Product rule
P(E^F)= P(F)P(EIF) or P(E^F)= P(E)P(FIE)
P(FIE)=P(F) or P(EIF)=P(E)
Independent events
Product rule of probability
P(E^F)=P(F)P(EIF) or P(E^F)=P(E)P(FIE)
At most one
0 OR 1
Combinations to solve prob
C(x)*C(p)/C(total)
At most 4
0 or 1 or 2 or 3 or 4