Formulas Flashcards
Work
W= ∫F(x) from a to b
Speed parametric
√[x’(t)² +y’(t)²]
Arc Length parametric
∫√[x’(t)² +y’(t)²] from a to b
Amplitude
2π/B
Area under a Curve of a Polar Equation
(1/2) ∫f(θ)² from a to b
Simpson’s Rule
(Δx/3)( f(x0)+ 4f(x1)+ 2f(x2) . . . . +2(f(x[n-2]))+ 4f(xn-1) + f(xn)
Lagrange Error
If P(x) is the nth degree Taylor polynomial of f(x) about c and for all t between x and c, then f^(n+1) < M for all t between x and c, then |f(x)- Pn(x)|< M/(n+1) |x-c|^(n+1)
e^x Maclaurin Series
1+ x + x²/2! +x^3/3! . .Σx^k/k!
sin(x) Maclaurin Series
x-x^3/3! + x^5/5! - x^7/7! . . . Σ(-1)^k (x^(2k+1)/(2k+1)!)
cos(x) Maclaurin Series
1- x²/2! + x^4/4!- x^6/6! . . . Σ(-1)^k (x^(2k)/(2k)!
ln(1+x) Maclaurin Series
x- x²/2 + x^3/3 - x^4/4. . . . Σ(-1)^k (x^(k+1)/(k+1))
Derivative of the Inverse of f(x)
1/ f’ (f(inverse of x))
Slope of the Polar Equation
[r’(θ)sin(θ) +r(θ)cos(θ)] / [r’(θ)cos(θ) - r(θ)sin (θ)]
Sum of a Geometric Series
cr^m/ (1-r)
Surface Area- Regular
2π ∫f(x)√ ̅(1+f’(x)²)