Formulas Flashcards
Binomial Coefficient
m!/k!(m-k)!
Expectation of X
E(X) = Σxf(x)
Variance of X
V(X) = E(X^2) - μ^2
Standard Deviation of X
SD(X) = √σ
Linear Transformation (Formula)
E(Y) = …
V(Y) = …
SD(Y) = …
Y = a + bx E(Y) = a + bE(X) V(Y) = b^2 V(X) SD(Y) = I b I σ^2
Linear Transformation (Properties)
- V(a) = 0
2. E(a) = a
Standardization of a Random Variable (Formula)
Z = (X-μ) / σ
Standardization of a Random Variable (Properties)
E(Z) = 0 V(Z) = 1
Chebyshev’s Inequality in Probability (Formula)
P(μ - kσ < X < μ + kσ) > 1- 1/(k^2)
Bernouli Distribution (Formula)
E(X) = …
V(X) = …
E(X) = p V(X) = p(1-p)
Bernouli Distribution (Properties)
is used to model random variables with two outcomes
Y ~ Bin(n,p) (Formula)
(nCr) (p^k) ((1-p)^n-k)
Y ~ Bin(n,p) (Properties)
E(Y) = …
V(Y) = …
E(Y) = np V(Y) = np(1-p)
Proportion of Success (p̂) (Formula)
E(p̂) = …
V(p̂) = …
p̂ = #of successes/n E(p̂) = p V(p̂) = (p(1-p))/n
Hypergeometric Distribution (drawn with replacement)
Y ~ Bin(n,p) where p = #successes/n
E(Y) = …
V(Y) = …
E(Y) = np V(Y) = np(1-p)