Formula Flashcards
expectation value of the number of photons
E(N) = <N> = Rτ</N>
Poisson distribution probability of receiving N photons in time τ
p(N) = [(Rτ)^(N) e^(-Rτ)]/N!
where Rτ = µ
variance of N
var(N) = E{[N-E(N)]^2}
var(N) = Rτ
arrival rate
R(hat) = N(obs)/τ
probability density function
Prob(a ≤ x ≤ b) =(b ∫ a) p(x)dx
normalisation
(∞ ∫ -∞) p(x) dx = 1
uniform pdf
p(x) = { 1/(b-a) a < X < b
{ 0 otherwise
central/normal or gaussian pdf
p(x) = 1/√2πσ …
CDF
P(x’) = (x’ ∫ -∞) p(x) dx
P(-∞) = 0 P(∞) = 1
the nth moment of a pdf discrete case
<x^(n)> = (b Σ x=a) x^(n) p(x)Δx
the nth moment of a pdf continuous case
<x^(n)> = (b ∫ a) x^(n) p(x) dx
1st moment
= mean or expectation value
2nd moment
= mean square
variance : discrete case
discrete case 2nd moment - 1st moment^2
variance: continuous case
continuous case 2nd moment - 1st moment^2
median
P(x(med)) = (x(med) ∫ -∞) p(x’) dx’ = 0.5
sample mean
µ(hat) = 1/M (M Σ i =1) x(i)
variance of sample mean
var(µ(hat)) = σ^2/M
bivariate normal distirbution
p(x,y) on formula sheet