Fluoro & DSA Flashcards
Define fluroscopy
Moving real-time x-ray images 3-30fps
Can also produce high quality stills (Acquisitions)
Modern fluroscopy
Output phosphor is couples to a tv camera or a photo-diode array
tube aligned to detector in a C-arm arrangement
some units are capable of cone beam CT too
Benefits of CsI input phosphor
Needle structure acts as its own light guides - leading to improved resolution
How does an II work?
1) X-rays hit an input phosphor (CsI) converting them into visible light
2) The visible light photons are converted into electrons via a photocathode
3) Electrodes focus and accelerate the electrons inc flux (e- /unit area / time)
4) e- strike an output phosphor (ZnCdS) converting them into visible light
5) optical coupling transmits the light to a camera where it is then read out
How does the photo-cathode work ?
Uses the photo-e- effect
E = hv - o
Photons with enough E free electrons
Optimised for CsI spectrum: 420nm
5-10% effic 20 photons per 1 e-
photo-elec energy 2-3 eV
How are electrons focused in an II?
Einzel lens: simple e- lens -> focus only
Acceleration: cathode - anode potential difference of around 25-35 kV
II Output Gain
Flux gain: 1000 photons at out put for each e- (gain of x 50)
Minification gain:
input area / output area
Brightness gain = flux gain x minif gain
What is the conversion factor?
Overall efficiency for input to light output accounting for photo loss.
Defined by ICRU as:
Luminance out / doserate in
units: Cd/m^2 / uGy/s
II Impact of field size on resolution and dose
As field size is reduced resolution increases
Smaller area of input window is mapped to the same output area
reduces minification gain, brightness reduced requires inc dose
Collimation is used to help reduce patient dose
Describe Automatic Brightness Control
A feedback system which aims to optimise image quality by maintaining brightness.
Input exposure parameters are adjusted in response to measured light levels at the output.
4 II limitations
Resolution: limited by cam / out phosphor due to use the minified image
Output limits the system - can reduce noise by inc input CsI thickness
Veiling glare: loss of contrast due to back shine from the output and x-rays penetrating to output
Space-charge effects: trade-off between res and min gain
Image distortion due to e- optics - lensing effects cause periphery issues. Can be affected by external mag fields less than that of a nearby mri room.
Changes as unit is rotated
Describe flat panel detectors
Indirect A-Si receptor
Similar to digital radiology but up to 30fps
Solves II issues
Describe FP field size selection
Old method: Digital magnification - res reduced
Dose inc to maintain brightness
New method: pixel binning for larger field sizes:
Group neighbouring pixels to improve no. photons per pixel
At small field sizes, binning is reduced. But must inc dose to inc snr.
Beyond this use digital mag.
FP ABC systems
- Select a pixel area to monitor
- Pixel values are prop to dose
- Can change AEC area
Define fluorography
Referred to as acquisition mode - used to be a sequence of live images recorded on film to produce a movie.
Now acq is a series or single digital image
fluoro is the live feed (can use last im hold)
can post-process both