Final Review Flashcards
sin30 or sin(π/6)
1/2
sin45 or sin(π/4)
rt2/2
sin60 or sin(π/3)
rt3/2
cos30 or cos(π/6)
rt3/2
cos45 or cos(π/4)
rt2/2
cos60 or cos(π/3)
1/2
tan30 or tan(π/6)
rt3/3
tan45 or tan(π/4)
1
tan60 or tan(π/3)
rt3
csc30 or csc(π/6)
2
csc45 or csc(π/4)
rt2
csc60 or csc(π/3)
(2rt3)/3
sec30 or sec(π/6)
(2rt3)/3
sec45 or sec(π/4)
rt2
sec60 or sec(π/3)
2
cot30 or cot(π/6)
rt3
cot45 or cot(π/4)
1
cot60 or cot(π/3)
rt3/3
reference angle
distance between angle’s terminal side and the x-axis
coterminal angle
two angles of different measures that share a terminal side
Pythagorean theorem
a^2 + b^2 = c^2
sine
opposite / hypotenuse
cosine
adjacent / hypotenuse
tangent
opposite / adjacent
cosecant
inverse of sin; hypotenuse / opposite
secant
inverse of cosine; hypotenuse / adjacent
cotangent
inverse of tangent; adjacent / opposite
sine equation
y = asin(b(x - c)) + d
starts on midline and goes up
a (trig equations)
amplitude (absolute value)
distance from max/min points to midline
b (trig equations)
frequency –> affects period
period = 2π/b
c (trig equations)
phase / horizontal shift
d (trig equations)
vertical shift (midline)
period of sine function
2π or 360
plot points by dividing period by 4
sine function domain / range
domain: (-inf, +inf)
range: midline +/- amplitude
cosine equation
y = acos(b(x - c)) + d
begins at max point (begins at minimum point if reflected)
period of cosine function
2π or 360
cosine function domain / range
domain: (-inf, +inf)
range: midline +/- amplitude
tangent function
y = atan(b(x - c)) + d
period of tangent function
π or 180
to plot points, put midline point halfway between asymptotes, 30 point 1/4 away, and 60 point 3/4 away