Final Flashcards
Unit Vector
V / |V|
Vector of a certain length in the direction of another vector
(V / |V| ) * length
Angle Between Two Vectors
cos(x) = (a.b) / |a||b|
Projection of Vector U onto V (vector)
[V.U / |V|^2 ] * V
Projection of Vector U onto V (scalar)
V.U / |V|^2
Area of a Parallelogram
|U * V|
Volume of a Parallelpipid
(a * b) . c
Requirements for Vectors Being Parallel
1) a = <b>c OR
2) a * b = 0 OR
3) a.b = |a||b|</b>
Vectors are Coplanar
Triple Scalar Product = 0
Parametric
<x,y,z> = <xo, yo, zo> + t<a,b,c>
x = xo + at
y = yo + bt
z = zo + ct
Symmetric
t = (x-xo)/a = (y-yo)/b = (z-zo)/c
If a=0, then x=xo
Length of a Curve
L = (int)_a^b |r’(t)|dt OR
L = (int)_a^B sqrt(f’(t)^2+g’(t)^2+h’(t)^2)dt
Re-parametrize the curve using the length formula
- Set the found length equal to s
- Solve for t
- Plug t into the original r(t) equation
Normal Vector
Of Two Parallel Planes: The slopes
Of Two Vectors: Cross product
Binormal Vector
T(t) = r’(t) / |r’(t)|
Projectile Motion
a(t) = -gj
Equation of a Tangent Plane
z = zo + fx(xo,yo)(x-xo) + fy(xo,yo)(y-yo)