Femoral Shaft Fracture Flashcards
What are the common causes of femoral shaft fractures?
Femoral shaft fractures are most commonly seen in:
- High-energy trauma
- Fragility fractures in the elderly (low-energy trauma)
- Pathological fractures (e.g. metastatic deposits, osteomalacia)
- Bisphosphonate-related fractures
Briefly describe the blood suppy to the femur and why this may be a problem
The bone is supplied by penetrating branches of the profunda femoris artery, therefore large volumes of blood (up to 1500ml) can be lost when fractured.
What are the clinical features of femoral shaft fractures?
The patient will present with pain in the thigh and/or hip or knee pain, and will be unable to weight bear. In severe cases, an obvious deformity will be apparent from the end of the bed.
Ensure that you assess the skin, which may be open or threatened (tethered, white, non-blanching). The proximal fragment is invariably pulled into flexion and external rotation (by iliopsoas and gluteus medius & minimus, respectively), which can further tent the skin.
Ensure to perform a full neurovascular examination of the lower limbs to check for any vascular or peripheral nerve injury, as well as a thorough secondary survey for associated injuries.
Briefly describe the Winquist and Hansen Classification
The Winquist and Hansen Classification can be used to classify the degree of comminution to femoral shaft fractures:
- Type 0- no comminution
- Type I- insignificant amount of comminution
- Type II- greater than 50% cortical contact
- Type III- less than 50% cortical contact
- Type IV- segmental fracture with no contact between proximal and distal fragment
What investigations should be ordered for a femoral shaft fracture?
Note: laboratory
Patients presenting following a major trauma should be investigated and managed as per the ATLS protocol.
Routine urgent bloods, including a coagulation and Group and Save, should be sent. Where a pathological cause is suspected, further work-up bloods, such as a serum calcium, may be warranted.
What investigations shoud be ordered for femoral shaft fracture?
Note: imaging
A plain film radiograph is the only routine imaging that is often needed, and should include an AP and lateral of the entire femur, including the hip and knee
Further imaging via CT scanning may be warranted if polytrauma is suspected, to further assess intra-articular or femoral neck fractures.
What is shown in the image?
An AP view of plain film radiograph, demonstrating a mid-shaft femoral fracture.
Briefly describe the initial management of a femoral shaft fracture
As per ATLS guidelines, an A to E assessment is vital, stabilising the patient and ensuring appropriate fluid resuscitation.
Ensure the patient has adequate pain relief, often requiring opioid analgesia +/- regional blockade (such as a fascia iliaca block). Any open fractures will need to be managed appropriately (as discussed here), including antibiotic prophylaxis, tetanus and medical photography.
A femoral shaft fracture requires immediate reduction and immobilisation; reducing fractures to near-anatomic alignment using in-line traction will ensure appropriate haematoma formation (/bone healing), as well as reducing pain.
Traction splinting, such as a Kendrick traction splint, are used in suspected or isolated fractures of the mid-shaft femur (acts to hold the femur in correct position against action of the large thigh muscle mass).
Most femoral shaft fractures require surgery, however long-leg casts may be indicated in undisplaced femoral shaft fractures in patients with significant co-morbidities.
When is traction splinting contraindicated?
Contraindications for traction splinting include hip or pelvic fractures, supracondylar fractures, fractures of ankle or foot or partial amputation.
Briefly describe the surgical management of a femoral shaft fracture
Femoral fractures should be surgically fixed within 24-48 hours, although sooner if an open fracture.
Most isolated cases can be treated with an antegrade intramedullary nail, which have around a 98% union rate and a low rate of post-operative complications.
External fixation (with subsequent delayed conversion to intramedullary nail) may be used in unstable polytrauma or open fractures, to ensure the patient is physiologically optimised prior to definitive fixation.
What are the complications of a femoral shaft fracture?
- Nerve injury or vascular injury
- Pudendal nerve injury (around 10%) or femoral nerve injury (rare)
- Mal-union (or rotational mal-alignment), delayed union or non-union
- Mal-union occurs in around 30% and 10% of proximal and distal fractures respectively
- Non-union occurs <10% of cases, however risk is increased with smoking and increased post-operative use of NSAIDs
- Infection
- Fat embolism
Briefly describe the prognosis of a femoral shaft fracture
Patients who survive the initial trauma associated with the injury typically heal well.
Early mobilisation following intra-medullary nailing greatly reduces complications. Bilateral femur fractures have higher rates of pulmonary complications and increased mortality rates, compared to unilateral fractures.
Patients >60yrs have a mortality rate of 17% and overall complication rate of 54%.
What differentials should be considered for a femoral shaft fracture?
If the mechanism was high-energy, ensure you formally assess for other orthopaedic injuries.
Commonly involved areas that may have fractured include the ankle, tibial shaft, tibial plateau, pelvis, and spinal fractures.