Extrema + related theorems Flashcards
1
Q
how to check extrema/critical points
A
- when f’(x) = 0
- domain endpoint values
- f’(x) does not exist
2
Q
if f’‘(x)>0
A
concave up
2
Q
mean value theorem
A
to guarantee there is 1+ x where the tan line = sec line
- f(x) must be differentiable on (a,b)
- f(x) must be continuous on [a,b]
3
Q
if f’‘(x)<0
A
concave down
4
Q
f’‘(x)=0
A
- extrema
- f’‘(x) changes sign/changes concavity
- points of inflection
5
Q
second derivative test
A
if x=a is an extrema and f’‘(a)>0, f(x) concaves up and the extrema is a minimum