Extra Integration Techiniques Flashcards
1
Q
Integration by Parts
A
∫udv = uv - ∫vdu
2
Q
Integrals in the form: ∫(x^n)(e^ax)dx, ∫(x^n)(sin(ax))dx, or ∫(x^n)(cos(ax))dx, ….
A
u = (x^n) dv = (e^ax)dx or sin(ax)dx or cos(ax)dx
3
Q
Integrals in the form: ∫(x^n)(lnx)dx, ∫(x^n)(arcsin(ax))dx, or ∫(x^n)(arctan(ax))dx
A
u = lnx or arcsin(ax) or arctan(ax) dv = (x^n)dx
4
Q
Integrals in the form: ∫(e^ax)(sin(bx))dx or ∫(e^ax)(cos(bx))dx
A
u = sin(bx) or cos(bx) dv = (e^ax)dx
5
Q
Guidelines for Integration by Parts
A
- Try letting (dv) be the most complicated portion of the integrand that fits a basic integration rule. Then (u) will be the factor(s) of the integrand
- Try letting (u) be the portion of the integrand whose derivative is a function simpler than (u). Then (dv) will be the remaining factor(s) of the integrand.
6
Q
Integrals involving √((a^2) - (u^2))
A
u = asin(x)
If (-π/2≤x≤π/2), then u = acos(x)
7
Q
Integrals involving √((a^2) + (u^2))
A
u = atan(x)
If (-π/2
8
Q
Intergrals involving √((u^2) - (a^2))
A
u = asec(x) u = atan(x) if u>a, where 0≤x≤π/2 u = -atan(x) if u
9
Q
x^2 needs to (trig sub)…
A
always have a coefficient of -1 or 1