Exponents Flashcards
1^n
1
0^n
0
A negative number to a even power
positive
A negative number to an odd power
negative
2^1
2
2^2
4
2^3
8
2^4
16
2^5
32
2^6
64
2^7
128
2^8
256
2^9
512
3^2
9
3^3
27
3^4
81
4^2
16
4^3
64
4^4
256
5^2
25
5^3
125
5^4
625
6^3
216
7^3
343
8^3
512
9^3
729
9^2
81
9^3
729
9^4
6561
6^2
36
6^3
216
6^4
1296
7^2
49
7^3
343
7^4
2401
8^2
64
8^3
512
8^4
4096
Positive base < 1 gets ____ as exponents increase
smaller aka fractions
Negative base < -1 gets _____ as exponents increase
absolute values get bigger but + and - signs alternate (whole numbers)
Negative base between -1 and 0 absolute values_____
are getting smaller but + and - signs are alternating aka fractions
(9^5)(9^3) =
9^8
12^7/12^3
12^4
9^0
1
(6^5)^3
6^15
b^-n=
1/b^n
a negative exponent on a fraction is the ?
reciprocal to the positive power
p/q^-n =
q/p^n
when we move powers in a fraction from numerator to denominator exponents ____
switch from negative to positive
(ab)^n =
(a^n)(b^n)
(a/b)^n =
a^n/b^n
we can simplify the sum of difference of powers by?
factoring out the smallest power
2^3 x 2^5
2^8 (add exponents)
5^4 / 5^2
5^2 (subtract exponents)
2^3 x 3^3
6^3 (multiply bases)
(3^4)^3
3^12 (multiply exponents)
5^-3
1/5^3
8^2/3
3 square root ^2 (numerator of fractional exponent = power and denominator of fractional exponent = root