Expected Value, Variance and Moment Generating Functions Flashcards
Expected Value
Let X be a random function, then we define its expected value E(X) = SUM_all x xP[X=x]
=SUM_all x xpX(x)
Also called mean and denoted by mu
Some properties of E(X)
- E(cX) = cE(X)
- E(c) = c
- E(X + Y) = E(X) + E(Y)
Do example on page 41
Variance
Let X be a random variable. X has a variance Var(X) or sigma^2
Var(X) = E((X-mu)^2)
=SUM_all x (x- mu)^2P[X=x]
or
Var(X) = E(X^2) - (E(X))^2
Some properties of Var(X)
- Var(cX) = c^2Var(X)
- If X is discrete:
- Var(X) = E(X^2) - (E(X))^2
Do example p.42
K-th moment of a Random Variable
We call E(X^k) the K-th moment of a random variable X.
We say that the K-th moment exists if E(|X|^k) < infty
Discrete uniform distribution
Bernoulli distribution
Binomial
E(X) = np
and
Var(X) = np(1-p)
Poisson
E(X) = lambda
and
Var(X) = lambda
Moment Generating Function
Let X be a discrete random variable. Then, we call
MX(t) = E(e^{tx}) = SUM_x e^{tx} P(X=x)
the moment generating function.
It is defined for all real values of t such that
SUM_x e^{tx} P(X=x)
converges.