Examen 3 Flashcards

1
Q

Si d1=kd2?

A

p E Δ

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Si d1=kd2 et p E Δ?

A

Confondues

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Si d1=kd2 mais p E pas Δ

A

Distinctes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Distance entre deux droites distinctes

A

ll P1P2 ­d1 ll
_________
ll d1 ll

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Si d1= pas kd2?

A

P1P2 ( d1 x d2)=0 ?

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Si d1= pas kd2 et P1P2 ( d1 x d2)=0?

A

Concourantes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Deux droites concourantes: qu’est-ce qu’on cherche?

A

PI et angle

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Deux droites concourantes: comment on trouve le PI?

A

Si symétrique, égaler les équations en x, en y et en z.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Deux droites concourantes: comment on trouve angle?

A

arcos l d1 d2 l
_______
lld1ll lld2ll

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Si d1= pas kd2 mais P1P2 ( d1 x d2)= pas 0?

A

gauches

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Distance deux droites gauche?

A

l P1P2 (d1 x d2)
___________
ll d1 x d2 ll

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

Si n1=kn2?

A

p E pi

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

Si n1=kn2 et p E pi?

A

Confondues

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

Si n1=kn2 mais p E pas pi?

A

Distinctes

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

Deux plans distincts: comment on troue la distance?

A

l P1P2 n1 l
_______
ll n1 ll

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

Si n1= pas kn2?

A

Sécantes

17
Q

Qu’est-ce qu’on cherche quand on a une droite sécante?

A

Une droite d’intersection et un angle dièdre

18
Q

Comment on trouve une droite d’intersection?

A

1- d = n1 x n2

2- pose x=0 et avec Cramer on trouve nos pts

19
Q

Comment on trouve angle dièdre?

A

arcos l n1 n2 l
________
lln1ll lln2ll

20
Q

Si d1 n2 = 0?

A

P E pi?

21
Q

Si P E pi?

A

Confondues

22
Q

Si P E pas à pi?

A

Distinctes

23
Q

Si droite et plan sont distincts: quelle est la distance?

A

l QP n l
_____
ll n ll

24
Q

Si d1 n2 = pas à 0?

A

Perce le plan

25
Q

Perce le plan: on cherche quoi?

A

Point d’intersection et angle

26
Q

Comment on trouve point d’intersection?

A

Remplace équation dans autre équation pour trouver k, puis met k dans équation symétrique.

27
Q

Angle point de percée

A

90 - arcos l d1 n2 l
______
lld1ll lln1ll