Examen Flashcards

1
Q

Sin30

A

1/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Sin45

A

1/2sqrt2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Sin60

A

1/2sqrt3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Cos30

A

1/2sqrt3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Cos45

A

1/2sqrt2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Cos60

A

1/2

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Tan30

A

1/3sqrt3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

Tan45

A

1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

Tan60

A

Sqrt3

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

Y²=4ax
a>0

A

Liggende dalparabool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

Y²=4ax
a<0

A

Liggende bergparabool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

X²=4ay
a>0

A

Staande dalparabool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

X²=4ay
a<0

A

Staande bergparabool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

(X²/a²)+(y²/b²)=1
a>b

A

Liggende ellips

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

(Y²/a²)+(x²/b²)=1
a>b

A

Staande ellips

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

(X²/a²)-(y²/b²)=1

A

Liggende hyperbool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
17
Q

(Y²/a²)-(x²/b²)=1

A

Staande hyperbool

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
18
Q

Transleer x²=4ay over (d,e)

A

(X-d)²=4a(y-e)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
19
Q

Transleer y²=4ax over (d,e)

A

(Y-e)²=4a(x-d)

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
20
Q

Transleer (x²/a²)+(y²/b²)=1 over (d,e)

A

((X-d)²/a²)+((y-e)²/b²)=1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
21
Q

Transleer (y²/a²)-(x²/b²)=1 over (d,e)

A

((Y-e)²/a²)-((x-d²)/b²)=1

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
22
Q

Bereken c bij brandpunten van liggende ellips (-c,0) en (c,0)

A

A²=b²+c²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
23
Q

Bereken c bij brandpunten staande hyperbool (0,-c) en (0,c)

A

A²+b²=c²

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
24
Q

|a c| =ad-bc
|b d|

A

Determinant

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
25
RC m = RC k
Evenwijdig
26
RC m × RC k = -1
Loodrecht
27
Opp paralellogram met vector (a,b) en (c,d)
Determinant
28
Tan(a+b)
(Tana+tanb)/1-(tanatanb)
29
Tan(a-b)
(Tana-tanb)/1+(tanatanb)
30
Tan90
Bestaat niet
31
Sin(90⁰-a)
Cos(a)
32
Cos(90⁰-a)
Sin(a)
33
Afstand van punt (p,q) tot lijn ax+by+c=0
(|ap+bq+c|)/sqrt(a²+b²)
34
Richtlijn liggende parabool
X=-a
35
Richtlijn staande parabool
Y=-a
36
Ɛ (excentriciteit) parabool
1
37
LR ellips
2×(b²/a)
38
Ɛ (excentriciteit) ellips
Sqrt(1-(b²/a²))
39
LR hyperbool
2×(b²/a)
40
Ɛ(excentriciteit) hyperbool
Sqrt(1+(b²/a²)
41
Asymptoot liggende hyperbool
Y=+-(b/a)×x
42
Asymptoot staande hyperbool
Y=+-(a/b)×x
43
A,5²
(A×(A+1))+0,25
44
Korte as ellips=
2b
45
Lange as ellips=
2a
46
Welk deel is de translatie? Ax²+Bxy+Cy²+Dx+Ey+F=0
Dx+Ey
47
Welk deel is de rotatie? Ax²+Bxy+Cy²+Dx+Ey+F=0
Bxy
48
Van 3 punten naar vergelijking cirkel
Algemene vergelijking x²+y²+px+qy+t=0 Punten invullen, stelsel oplossen Vergelijking herschrijven
49
Ax²+Bxy+Cy²+Dx+Ey+F=0 A=C en B!=0
Rotatie over 45°
50
Rotatie bij Ax²+Bxy+Cy²+Dx+Ey+F=0
Tan2þ=B/(A-C)
51
Van Tan2þ=B/(A-C) naar þ
2tanþ/(1-tan²þ)=B/(A-C) Kruislings vermenigvuldigen Splitsen naar (tanþ+a)(tanþ+b)=0
52
Geef sinþ en cosþ vanuit tanþ=a/b
Teken driehoek met overstaande=a, aanliggende=b schuine met pythagoras Sinþ=overstaande/schuine Cosþ=aanliggende/schuine
53
Herschrijf Ax²+Bxy+Cy²+Dx+Ey+F=0 naar ax²+bx+c=0
Ax²+(By+D)x+(Cy²+Ey+F)=0
54
Discriminant
b²-4ac
55
Eerste D bij onderzoek is <0
Geen oplossingen
56
Abc formule
X=(-b+-sqrtD)/2a
57
Eerste D bij onderzoek geeft 1 punt
Ontaarde ellips
58
Eerste D bij onderzoek geeft 1 lijn
Ontaarde parabool
59
Eerste D bij onderzoek geeft 2 snijdende lijnen
Ontaarde hyperbool
60
Eerste D is niet te ontbinden, maar wel antwoorden
2de D berekenen
61
2de D <0
Ellips
62
2de D = 0
Parabool
63
2de D > 0
Hyperbool