Exam questions Flashcards

1
Q
matrix with some unknown values
find values of k for which Ax=b has
1- no solution
2- a unique solution
3-infinitely many solutions
A

row reduce [A b] to reduced echelon form
1- find k such that one row is [0 0 0 c] (inconsistent)
2- find k in expression a such that a /= 0 [0 0 a c]
3- find k for a = 0 and c = 0

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

Are the columns of B linearly dependent?

A

row reduce B to reduced echelon form

  • pivot in every column : linearly independent
  • no pivot in every column : linearly dependent
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

Find basis for
1- col A
2- Row A
3- Nul A

A

row reduce to reduced echelon form
1- basis = colums of original matrix where there is pivot positions
2- basis = rows of original matrix where there is pivot positions
3- solve Bx=0 x=x3(a,b,c) then basis is the vector abc

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Given a system, use Cramer’s rule to find the value of one of the variables (z)

A

take A as the matrix with the left hand side of the equations in the system
take b the vector with the right hand side of the equations
compute det A
compute det Ai(b) such that the value in i is the variable
use Cramer’s rule : z=(det Ai(b))/det A

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Given two matrices A and C

Find the matrix B that solves AB= C

A
AB=C <=> B=A^-1 C
compute A^-1 with A^-1 = (1/det A) * adj A
compute B = A^-1 C
OR
row reduce [A C]
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

Given two bases A and B

Find the chnage-of-coordinates matrix from A to B

A

row reduce to reduced echelon form [B /A]
obtain [I/C]
C is P(C

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

Given a set H

Prove that H is a subspace of Rn

A
show that 
-zero vector is in H
-u+v is in H
-cu is in H
OR
show H is a span of vectors
How well did you know this?
1
Not at all
2
3
4
5
Perfectly