Exam Prep Flashcards
Planck-DeBroglie dispersion relation for particles
omega = hbar*k^2/(2m)
Free particle FT pair
Psi(x, t) = 1/sqrt(2pi) * integral(-inf, inf) phi(k, t) e^(ikx) dk
Phi(k, t) = 1/sqrt(2pi) * integral(-inf, inf) psi(x, t) e^(-ikx) dx
Dirac delta function definitions (6)
1) integral(-inf, inf) f(x) delta(x-x0) dx = f(x0)
2) delta_n(x) = n for |x| <= 1/(2n)
3) delta_n(x) = n/sqrt(pi) * e^(-n^2x^2)
4) delta_n(x) = n/pi * 1/(1 + n^2x^2)
5) delta_n(x) = sin(nx)/(pi*x) = 1/(2pi) * integral(-n, n) e^(ikx) dk
6) delta(x) = 0 if x=/=0, undefined otherwise such that integral(-inf, inf) = integral(0-, 0+) = 1
Delta function: sifting property
Integral(-inf, inf) f(x)delta(x-x0) dx = integral(x0-, x0+) f(x0)delta(x-x0) dx = f(x0)
Delta function: IBP
integral(-inf, inf) f(x) delta’(x-x0) dx = -f’(x0)
Delta function: symmetry
Even function
Integral(0, inf) f(x)*delta(x) dx = 1/2 * f(0)
Delta function: scaling
Delta(kx) = 1/|k| * delta(x)
Delta function: composition
g(x) differentiable with simple zeroes at xi
Delta(g(x)) = sum(i) delta(x-xi)/|g’(xi)|
Momentum operator in position representation
- derived by computing <p> in position representation
p = hbar/i * d/dx</p>
Phase velocity of wave packet
v = omega(k)/k
Group velocity of wave packet
V = d/dk (omega(k))
Dispersion relation for light wave
Omega = ck
TDSE
ihbard/dt(psi) = H*psi
- IC: t=0, psi(x, 0) = f(x)
- BC: t->inf, psi->0 for + and -
TDSE solution method
1) separation of variables: x is TISE, theta(t) = exp(-i/hbarEnt)
2) linear superposition of solutions
3) BCs to get Fourier coefficients for constants Cn
Inner product
= integral(-inf, inf) f*(x)g(x) dx
Orthogonality
= delta_mn
Completeness
Sum(n) psi*(x’) * psi(x) = delta(x’-x) (position representation)
Integral(-inf, inf) |x>
Transmission probability
Flux of stuff out / flux of stuff in
Reflection probability
Flux of stuff out backwards / flux of stuff in same