exam flashcards
polar form
r(cosx+isinx)
1 in polar form
1=cos2pi+isin2pi
integers
Z (-2, -1, 0, 1, 2)
natural numbers
N -positive integers (1, 2, 3)
whole numbers
W (0, 1, 2, 3)
real numbers
R -every number (rational and irrational)
contradiction
assume conjecture is false
A’= -A
skew symmetric matrix
skew symmetric matrices always have
0s in the lead diagonal
redundancy means
there is an infinite number of solutions
cosecx=
1/sinx
cotx=
1/tanx
cos^2x-sin^2x=
cos2x
f’’(x)>0
minimum t.p.
f’’(x)<0
maximum t.p.
2sin^2x=
1-cos2x
If’(x).f(x)=
1/2(f(x))^2+c
2cos^2x=
1+cos2x
sin2x=
2sinxcosx
displacement =
|(x(t))^2+(y(x))^2|
direction=
tana= dy/dt / dx/dt
tanx=0/1
0
tanx=0/-1
pi
if A=A’
the matrix is symmetrical
A+B=
A’+B’
co prime
having no positive factors in common aside from 1
Itanx/cosx=
secx
(n-2)!=
(n-2).(n-3)!