Exam 2 Formulas Flashcards
1
Q
sinx
A
cosx
2
Q
cosx
A
-sinx
3
Q
tanx
A
sec^2x
4
Q
cotx
A
-csc^2x
5
Q
secx
A
secxtanx
6
Q
cscx
A
-cscxcotx
7
Q
sin^-1x
A
1/sqrt(1-x^2)
8
Q
cos^-1x
A
-1/sqrt(1-x^2)
9
Q
tan^-1x
A
1/1+x^2
10
Q
csc^-1x
A
-1/|x|sqrt(x^2-1)
11
Q
sec^-1x
A
1/|x|sqrt(x^2-1)
12
Q
cot^-1x
A
-1/1+x^2
13
Q
linear approximation
A
f(x) = f(a) + f’(a)(x-a)
14
Q
mean value theorem
A
f’(c)= f(b) - f(a)/b-a
15
Q
Rolle’s Theorem
A
- f(x) is continuous on [a,b]
- f(x) is differentiable on (a,b)
- f(a) = f(b)
THEN there exists at least one c in (a,b) such that f’(c) = 0