Exam 2 Flashcards
p(x=a)
binompdf(n,p,a)
p(x≤a)
binomcdf(n,p,a)
p(x<a)
binomcdf(n,p,a-1)
p(x>a)
1-binomcdf(n,p,a)
p(x≥a)
1-binomcdf(n,p,a-1)
mean for binomials
n x p
standard deviation for binomials
square root n x p x q
uniform distribution
number in between a & b x 1/b-a
p(a<x<b)
normalcdf(a,b,mean,standard deviation)
invnorm formula
b=invnorm(percentage, mean, standard deviation)
p(x<b) or p(x>b) (small tail)
0.5-normalcdf(a,b,mean,standard deviation)
p(x<b) or p(x>b) (big tail)
0.5+normalcdf(a,b,mean,standard deviation)
p(x<b>c) (two small tails)</b>
1-normalcdf(a,b,mean,standard deviation)
z scores
mean=0, standard deviation=1
How do you determine a probability distribution
- Sum of all probablities is 1
- Every probablity is between 0 and 1
mean of probability distribution
put x and p(x) in calculator and use var-stats
average probability
normalcdf(a,b,mean,standard deviation/square root of average)