Exam 2 Flashcards
∫ 2+x^2 / 1+x^2 dx
Split into ∫ 2 / 1+x^2 dx + ∫ x^2 / 1+x^2 dx
Divide x^2+1 into x^2
Create new integral
∫ 2 / 1+x^2 dx + ∫ (1 - 1/x^2+1) dx
∫ 2 / 1+x^2 dx + ∫dx + ∫ 1 / 1+x^2
∫ 1 / 1+x^2 dx + ∫dx
= tan^-1(x) + x +C
∫ tan^2ϴ * sec^4ϴ dϴ
Split sec^4ϴ into sec^2ϴ*sec^2ϴ
sec^2ϴ = (1+tan^2ϴ)
∫ tan^2ϴ(1+tan^2ϴ)sec^2ϴ dϴ
Distribute
u=tanϴ
du=sec^2ϴ dϴ
∫ u^2 du + ∫ u^4 du
=u^3/3 + u^5/5 + C
= tan^3ϴ/3 + tan^5ϴ/5 +C
Integration by parts formula
∫ udv = uv - ∫vdu
∫ lnx dx
Integration by Parts
u = lnx , du = 1/x dx
v = x , dv = dx
Sub into IBP
xlnx - ∫x * 1/x dx
xlnx - ∫ dx
= xlnx -x +C
∫ ln (2x +1) dx
Integration by Parts
W sub ; w = 2x+1 , dw = 2dx , dx = dw/2
∫ lnw * dw/2
1/2 ∫ lnw dw
1/2 (wlnw - w +C) - IBP
Sub w back in
=1/2(2x+1) * ln(2x+1) - 1/2(2x+1) +C
∫ tan^2x sec^2x dx
Integration by Parts
u = tan^2x , du = 2tanx*sec^2x dx
v = tanx , dv = sec^2x dx
tan^3x - ∫ tanx * 2tanxsec^2x dx
tan^3x - 2 ∫ tan^2xsec^2x dx
Original Integral I = tan^2xsec^2x dx
= tan^3x -2I
3I = tan^3x
I = tan^3x/3 +C
∫ y / e^2y dy : [0,1]
Integration by Parts
w = -2y , y = w/-2
dw = -2dy
dy = -dw/2
∫ w/-2 * e^w * dw/-2
I = 1/4 ∫ we^w dw
J = ∫ we^w dw
u=w , dv = e^w dw
du = dw , v = e^w
= we^w - ∫ e^w dw = we^w -e^w +C
= -2ye^-2y - e^-2y +C
I = 1/4 J
=1/4 (-2ye^-2y - e^-2y +C)
=-1/2 * ye^-2y ] from 0,1 - 1/4 * e^-2y ] from 0,1
∫ tany dy
Trig Integral
∫ siny/cosy dy
u = cosy , du = -siny dy
-du = siny dy
= - ∫ du/u
= -ln u +C
= -ln |cosy|+C
=ln |cosy|^-1 +C
=ln |secy| +C
∫ cos^2xdx
Trig Integral
∫ 1 + cos2x / 2 dx
∫ 1/2 dx + ∫ cos2x/2 dx
=1/2x + 1/4sin2x +C
∫ sin^2xdx
Trig Integral
∫ 1 - cos2x / 2 dx
∫ 1/2 dx - ∫ cos2x/2 dx
=1/2x - 1/4sin2x +C
∫ dx / 1 + cosx
Trig Integral
∫ dx / 1 +cosx * (1-cosx/1-cosx)
∫ (1-cosx) / sin^2x dx
∫ 1/sin^2x dx - ∫ cosx / sin^2x dx
∫ csc^2x dx - ∫ cotx*cscx dx
-cotx - (-cscx) +C
= -cotx + cscx +C
∫ xtan^-1x dx
Trig Integral
u = tan^-1x , x = tanu
du = 1 / 1+x^2 dx
dx = (1+x^2)du = (1 + tan^2u) du
I = ∫ tanu * u(1+tan^2u) du
=∫ utan^3u du + ∫ utanu du
First part cancels
= ∫ xtan^-1x dx
u = tan ^-1 , du = 1/(1+x^2) dx
v = x^2 / 2 , dv = xdx
= x^2 / 2 tan^-1x - ∫ x^2 / 2 * 1/(1+x^2) dx
Divide x^2 +1 into x^2
=> 1/2 ∫ (1- 1(x^2+1)) dx => 1/2 tan^-1x
I = x^2 / 2 tan^-1x - 1/2x + 1/2tan^-1x +C
= 1/2 (x^2+1) tan^-1x - 1/2x + C
sqrt (a^2 - x^2)
Trig Sub
x = asin ϴ or x = acosϴ
= sqrt (a^2 - a^2sin^2ϴ)
= sqrt (a^2 (1-sin^2 ϴ)
= a * sqrt (cos^2ϴ)
=acosϴ
sqrt (a^2 + x^2)
Trig Sub
x = atanϴ
= sqrt (a^2 + a^2tan^2ϴ)
= sqrt (a^2(1+tan^2ϴ)
= a * sqrt(sec^2ϴ)
=asecϴ
sqrt (x^2 - a^2)
Trig Sub
x = asecϴ
= sqrt (a^2sec^2ϴ - a^2)
= sqrt (a^2(sec^2ϴ-1)
= a * sqrt (tan^2ϴ)
=atanϴ