Exam 1 Flashcards
Volume of Revolution: If the axis of rotation is perpendicular to the axis of integration, then you want to use which method?
Shell Method
V = [a, b] (2pi * (Radius)(Height))
What do you use when you don’t have a volume of revolution? (Perpendicular to the axis of integration)
Slicing
V = Integrate [a, b] A(x)
Work =
Force * Displacement
integrate [a, b] F(x)
Work: If D(h) represents the height travelled at depth h, and A(h) is the cross section area, where w is the weight density, the work becomes:
integrate [a, b] (wD(h)A(h)) dh
Average Value of a Function
f(c) = (1/(b-a)) * integrate [a, b] f(x) dx
a) Find the avg value of the function(s)
b) Find a c in the interval on which the function achieves its avg value
Integration by Parts
Integrate udv = uv - integrate (vdu)
Trig Integrals:
Integrate ((sin^m)x)((cos^n)x)dx
If n is odd:
Save one cosx and convert the rest to sin using
(cos^2)x) = 1 - ((sin^2)x
Trig Integrals:
Integrate ((sin^m)x)((cos^n)x)dx
If m is odd:
Save one sinx and convert the rest to cos using
(sin^2)x) = 1 - ((cos^2)x
Trig Integrals:
Integrate ((sin^m)x)((cos^n)x)dx
If both m and n are even:
Use the identites:
((sin^2)x) = ((1-cos2x)/2)
((cos^2)x) = ((1+cos2x)/2)
Trig Integrals:
Integrate ((tan^m)x)((sec^n)x)dx
If n is even
Save on ((sec^2)x) and convert the rest to tan using ((sec^2)x) = ((tan^2)x) + 1
Trig Integrals:
Integrate ((tan^m)x)((sec^n)x)dx
If m is odd
Save a secxtanx and convert the rest to sec using
((tan^2)x) = ((sec^2)x) - 1
Trig Integrals:
Integrate ((tan^m)x)((sec^n)x)dx
If m is even and n is odd
Convert everything to sec and integrate by parts with
dv = ((sec^2)x)
Trig Integrals:
integrate ((tan^n)x)dx
convert one ((tan^2)x) to ((sec^2)x) -1 split the problem into two integrals
Trig Integrals:
Integrate secx dx
= ln |secx + tanx| + C
Trig Substitution:
a^2 - (b^2)(x^2)
x = (a/b)sin(theta)