Equations Flashcards
R3 vector equation - plane
(X, y, z) = (x0, y0, z0) + s(a1, a2, a3) + t(b1, b2, b3), s,tER
R3 parametric equation - plane
x = x0 + sa1 + tb1 y = y0 + sa2 + tb2 z = z= + sa3 + tb3
S, t ER
R3 Cartesian equation - plane
Ax + By + Cz + D = 0
D = -Ax0 - By0 - Cz0
A(x-x0) + B(y-y0) + C(z-z0) = 0
S, t ER
R2 vector equation - line
(x, y) = t(a, b) + (x0, y0)
tER
R2 parametric equation - line
x = ta + x0 y = tb + y0
TER
R2 Cartesian equation - line
Ax + By + C = 0
Ax + By -Ax0 - By0 = 0
R3 vector equation - line
(x, y, z) = t(a, b, c) + (x0, y0, z0)
tER
R3 parametric equation - line
x = ta + x0
y = tb + y0
z = tc + z0
tER
Symmetric equation
t = (x-x0)/a = (y-y0)/b = (z-z0)/c
a, b, c == 0
Only R3 lines
Angle between planes
θ = arccos (n1•n2/||n1|| ||n2||)
Distance between planes
d = |Ax + By + Cz + D| / root(A^2 + B^2 + C^2)
Angle between lines
θ = arccos (n1•n2/||n1|| ||n2||)
Or
= arccos (d1•d2/||d1|| ||d2||)
Distance between lines
d = |PoP•n|/||n||
Or
= |Ax + By + C|/||n||
Angle of inclination
arctan(y/x)
Dot product (geometric)
v•w = ||v|| ||w|| cosθ