Equations Flashcards
Momentum
p=hbark
Energy of free electron
E=hbar^2k^2/2m
Schrodinger eqn
H|ψ>=E|Ψ>, H|C>=E|C>
Momentum operator
P=-ihar*laplacian
Hamiltonian
H=1/2mP(operator)^2+V=-habr^2/2m*Δ^2+V
Hamiltonian matrix elements
=<Hi|H|Hj>
2nd order perturbation theory
E = E0+<ψn|H|ψn>+Σn’≠n<ψn|Hpert|ψn’>/εn-εn’
LCAO for diatomic molecule
(E1 0 0 E2)(C1 C2) = E (1 S S 1) (C1 C2)
Energy for LCAO when E1=E2=E0
E = Eo±|U|
(C1 C2) when E1=E2
1/root(2)*(1 ±1)
E for LCAO when E1≠E2
E=Eav±root(Ecov^2+Eionic^2)
Ecov
Ecov=2|U|
Eionic
=|E1-E2/2|
Eav
=E1+E2/2
Bloch Theorem
ψ(r+a) = exp(ikr)ψ(r)
Bloch function
ψn(r)=exp(ikr)un(r)
average p
<p>=<ψnk|P|ψnk> = hbark + <Un|p|Un> = Pcrystal ( + Pnn atomic part which =0 when definite parity)
</p>
Effective mass
1/m*=1/hbar^2d^2E/Dk^2=1/m(1+Ep/Eg)
Ep (energy of kane momentum)
Ep=2Pcv^2/m
Energy of dipole in magnetic field
Hso proportional σΔV*P
Vg Group velocity
Vg=dω/dk=1/hbarΔE
acceleration with group velocity
a = dVg/dt=M^-1*F