Equations Flashcards
Linear Normalisation
I_n = (I - Min) [(Max_new - Min_new) / (max-min)] + min_new
Threshold
Threshold = region_mean - offset
Within (intra) class variance
Weight of background = (number of pixels below threshold) / total number of pixels
Mean_background = (number of pixels x intensity levels) / number of background pixels
variance_background = [(pixel intensity-mean)^2 x number of pixels with intensity] +… / number of background pixels
Repeat for foreground
Intra (within) class variance = (background weight)(background variance) + (foreground weight)(foreground variance)
Roberts edge detector
sqrt[(A-D)^2 +(B-C)^2]
Prewitt edge detector
sqrt[(G+H+I)-(A+B+C)]^2+[(C+F+I)-(A+D+G)]^2]
Sobel edge detector
2 3x3 masks 1,2,1, 0,0,0, -1,-2,-1 and 1,0,-1, 2,0,-2, 1,0,-1
sqrt{[(A+2 * B+C)-(G+2 * H+I)]^2 +[(A+2 * D+G)-(C+2 * F+I)]^2}
FREI & CHEN EDGE DETECTOR
2 3x3 masks -1,-root2,-1, 0,0,0, 1, root2, 1 and -1,0,1, -root2,0,root2, -1,0,1
sqrt[(f1)^2+(f2)^2]
SNR
(variance_signal)/(variance_noise}
PSNR
Peak signal to noise ratio
10log10(MAX_I^2)/(MSE)
Euler number
Blobs - holes
4-adjacency
1
2. 0
3
8-adjacency
- 1
- 0
- 7
Runcode
(Row#_A, Col_start_A, Col_end_A : Row#_B, Col_start_B, Col_end_B :….)
Approx perimeter
N_e + sqrt(2) * N_o
White top hat
A - (A0K)