EAE2522 Week 3 Flashcards

1
Q

<p><strong><span>What is Petrology?</span></strong></p>

A

<p><span>Petrology looks at the composition, texture and structure of rocks, and how they form.</span></p>

<p><span>EAE2522 1aa</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

<p><strong><span>What influences deposition?</span></strong></p>

A

<p><span>Deposition is highly dependent on the form of transport environment.</span></p>

<div>Glacial</div>

<div>Aeolian</div>

<div>Rivers and alluvial fans</div>

<div>Lakes</div>

<div>Oceans</div>

<div>Deltas</div>

<div>Estuaries</div>

<div>Shallow marine</div>

<div>Deep sea</div>

<div>Volcanic</div>

<p><span>EAE2522 1ab</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

<p><strong><span>What is Diagenesis?</span></strong></p>

<p>4 points.</p>

A

<ul><li>Sediments get buried (under other sediments) </li><li>Physical and chemical changes </li><li>Decrease in water content, porosity, increase in grain packing and cementation </li><li>Leads to lithification</li></ul>

<p><span>EAE2522 1ac</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

<p><strong><span>What are the 3 types of diagenesis?</span></strong></p>

<p>3 points.</p>

A

<ul><li>Eogenesis</li><li>Mesogenesis</li><li>Telogenesis</li></ul>

<p><span>EAE2522 1ad</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

<p><strong><span>What are authigenic minerals?</span></strong></p>

<p>5 points.</p>

A

<p><span>During lithification/diagenesis, additional minerals can form/precipitate</span></p>

<div>Minerals involved: </div>

<ul> <li>Quartz</li> <li>Calcite</li> <li>Fe-oxides</li> <li>Salts </li> <li>Clay minerals</li></ul>

<p><span>EAE2522 1ae</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

<p><strong><span>What is the Matrix?</span></strong></p>

<div>No Neo not that matrix ☺</div>

A

<p><span>Fine (small grained) sediment between larger grains. <0.03mm.</span></p>

<p><span>EAE2522 1af</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

<p><strong><span>What is Cement?</span></strong></p>

A

<p><span>Precipitation in pore space during diagenesis. Always secondary.</span></p>

<p><span>EAE2522 1ag</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

<p><span>Describe</span></p>

<p><strong><span>Matrix -Clay minerals</span></strong></p>

<p>6 points.</p>

A

<ul><li>Different to the size group 'clay' </li><li>Layered/sheet silicate minerals </li><li>Four main groups: Kaolinite, Illite, Smectite, and Vermiculite </li><li>Main difference is the spacing between the layers </li><li>Make up bulk of matrix </li><li>Identification hard under microscope</li></ul>

<p><span>EAE2522 1ah</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

<p><span>Describe</span></p>

<p><strong><span>Cement</span></strong></p>

<p>3 points.</p>

A

<ul><li>Precipitation of minerals in pore space. </li><li>Silica and carbonate cement. </li><li>Cement can be around grains ,or filling up more or less whole pore space </li></ul>

<p><span>EAE2522 1ai</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

<p><span>Describe</span></p>

<p><strong><span>Composition</span></strong></p>

<p>3 points.</p>

A

<div>Sediments usually have a higher silica content (compared to parent rocks) → chemical stability, weathering </div>

<div>In general (clastic sediments): </div>

<ul> <li>High SiO₂</li> <li>Moderately Al₂O₃</li> <li>Low Fe, Mg, Ca, Na and K </li></ul>

<div>Chemical composition of clasts of higher interest → provenance</div>

<p><span>EAE2522 1aj</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
11
Q

<p><strong><span>Classification Conglomerates</span></strong></p>

<p>4 points.</p>

A

<ul> <li>More than 30% gravel size particles (>2mm) </li> <li>Clasts in conglomerates are usually rock fragments </li> <li>Oligomict: mainly one type of clasts </li> <li>Polymictor petromict:: mixture of clasts </li></ul>

<div>Classification can follow process ('genetic'), or clast type</div>

<p><span>EAE2522 1ak</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
12
Q

<p><strong><span>Classification Mudstones</span></strong></p>

<p>5 points.</p>

A

<ul><li>More than 50% silt and clay size (<0.062mm) grains</li><li>Also known as shales (if laminated)</li><li>Main components are clay, quartz and feldspar</li><li>Usually slightly lower in SiO₂</li><li>Classification based on field characteristics</li></ul>

<p><span>EAE2522 1al</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
13
Q

<p><strong><span>Black Shales</span></strong></p>

<p>3 points.</p>

A

<ul><li>Contain organic carbon (~5% or more)</li><li>Anoxic conditions</li><li>Used for RedOx studies of GOE</li></ul>

<p><span>EAE2522 1am</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
14
Q

<p><span>Classification based on chemical composition</span></p>

<p><strong><span>Chemical sediments</span></strong></p>

A

<div><strong>Carbonates</strong>: → limestone (Ca) and dolomite (Mg) </div>

<div><strong>Cherts</strong>: SiO₂ </div>

<div><strong>Evaporites</strong>: salts </div>

<div><strong>Fe rich </strong>(>15% Fe) </div>

<div><strong>Phosphorites </strong>(>15% P₂O₄, 6.5% P)</div>

<p><span>EAE2522 1an</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
15
Q

<p><strong><span>What is Provenance?</span></strong></p>

<p>5 points.</p>

A

<p><span>Where does the sediment come from?</span></p>

<div>Why: By reconstructing the history of a sediment we can learn about:</div>

<ul> <li>Source regions (rocks, climate)</li> <li>Transport mechanisms</li> <li>Erosion</li> <li>Deposition sites/environments</li> <li>Tectonic reconstructions</li></ul>

<p><span>EAE2522 1ao</span></p>

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
16
Q

<p><strong><span>How do we determine provenance?</span></strong></p>

<p>4 points.</p>

A

<ul> <li>Sedimentary structures and textures</li> <li>Clasts/components and mineralogy</li> <li>Geochemistry (whole rock and minerals separates)</li> <ul> <li>Minerals used for this have to 'detrital', meaning they are derived from somewhere else (ie, not the minerals that precipitate during diagenesis)</li> </ul></ul>

<p><span>EAE2522 1ap</span></p>

17
Q

<p><span>What do we learn from</span></p>

<p><strong><span>Structures and textures</span></strong></p>

<p>5 points.</p>

A

<ul> <li>Clast shape, size and sorting: transport length, energy and duration</li> <li>Current/directional indicators</li> <li>Grain size: relief of source area</li> <li>Shape of clasts: transport medium</li> <li>Volume of sediments/thickness of beds/units</li></ul>

<p><span>EAE2522 1aq</span></p>

18
Q

<p><span>Describe</span></p>

<p><strong><span>Clast types and mineralogy</span></strong></p>

<p>4 points.</p>

A

<ul><li>Which clasts types are found in the sediment depend not only on transport, but also on weathering (and therefore climate, relief etc) </li><li>More robust minerals, like quartz, zircon and some feldspars, as well as other heavy minerals might be 'artificially' enriched in sediments </li><li>Rock fragments </li><li>Minerals can indicate rock type too (assemblage of minerals)</li></ul>

<p><span>EAE2522 1ar</span></p>

19
Q

<p><span>Describe impact of:</span></p>

<p><strong><span>Tectonic settings</span></strong></p>

<p>3 points.</p>

A

<div><strong>Continental block</strong></div>

<ul> <li>Continent, only few volcanic rocks, quartz, feldspar and rock fragments</li></ul>

<div><strong>Magmatic arc </strong></div>

<ul> <li>Convergent plate margin ('subduction zones'), volcanic rock, plagioclase, less quartz</li></ul>

<div><strong>Recycled orogen </strong></div>

<ul> <li>Convergent plate margin between two continental masses, sediments and metamorphic rock fragments</li></ul>

<p><span>EAE2522 1as</span></p>

20
Q

<p><strong><span>What is the Gazzi Dickson method?</span></strong></p>

<p>4 points.</p>

A

<ul> <li>Point counting method</li> <li>Thin section</li> <li>300 to 500 randomly selected points</li> <li>Mineral at each point</li></ul>

<p><span>EAE2522 1at</span></p>

21
Q

<p><span>Describe</span></p>

<p><strong><span>Quartz</span></strong></p>

<p>5 points.</p>

A

<ul><li>Most common particle espin sandstones </li><li>Liquid inclusions (point to volcanic origin) </li><li>Mineral inclusions </li><li>Under the microscope (extinction and polycrystallinity) can point to volcanic, igneous or metamorphic source </li><li>Cathodoluminescense</li></ul>

<p><span>EAE2522 1au</span></p>

22
Q

<p><span>Describe</span></p>

<p><strong><span>Fekdspar</span></strong></p>

<p>4 points.</p>

A

<ul><li>Presence of feldspar points to crystalline, 'first generation' source rocks (weathering!) </li><li>Indicator of weathering and erosion in source area </li><li>Some feldspars are indictors for certain rock types: alkali feldspars igneous and metamorphic, plagioclase volcanic origin </li><li>Under the microscope: zoning (igneous)</li></ul>

<p><span>EAE2522 1av</span></p>

23
Q

<p><span>Describe</span></p>

<p><strong><span>Zircon</span></strong></p>

<p>3 points.</p>

A

<ul> <li>Heavy mineral</li> <li>Extremely robust</li> <li>ZrSiO₄</li></ul>

<div></div>

<div><strong>Hafnium</strong>: Hf isotopic composition of source is preserved</div>

<div><strong>Uranium</strong>: U-Pd dating reveals age of source</div>

<p><span>EAE2522 1aw</span></p>

24
Q

<p><strong><span>What are the problems and limitations of provenance investigation?</span></strong></p>

<p>4 points.</p>

A

<p><span>Selective!<br></br>Occurrence of minerals and rock fragments is highly depended on their resistance against weathering and transport</span></p>

<ul><li>Tracing the provenance of reworked sediments is very difficult </li><li>Diagenesis (and other late stage processes) can alter the minerals and change the chemical and isotopic composition. </li><li>You are never 100 % sure you captured every source region. </li><li>You need something to compare your data to (geochemical)</li></ul>

<p><span>EAE2522 1ax</span></p>

25
Q

<p><span>Thin Section Petrology</span></p>

<p><strong><span>Crystal Habit</span></strong></p>

<p>5 points.</p>

A

<div>How well-developed crystal faces are: e.g.</div>

<ul> <li>Euhedral</li> <li>Subhedral</li> <li>Anhedral </li></ul>

<div>Note: Habit will vary depending on the sample </div>

<ul> <li>It depends mainly on the conditions of mineral formation</li> <li>In sediments we rarely deal with crustal habit!</li></ul>

<p><span>EAE2522 1ay</span></p>

26
Q

<p><span>Thin Section Petrology</span></p>

<p><strong><span>Crystal/Grain Shape</span></strong></p>

A

<div>E.g., prismatic, equant, fibrous, polygonal, tabular, hexagonal, etc.</div>

<div></div>

<div>In sediments we are usually more concerned about grain shapes (angular, rounded, etc.)</div>

<p><span>EAE2522 1az</span></p>

27
Q

<p><span>Thin Section Petrology</span></p>

<p><strong><span>Relief</span></strong></p>

<p>2 points.</p>

A

<p><span>High relief = sharp black line around mineral = large difference in refractive indices (RI).</span></p>

<ul> <li>RI is hard to measure - we use high, medium and low relief </li> <li>You can describe relative mineral relief or compare it to epoxy glue (RI = 1.54). </li></ul>

<div>The boundary between topaz and quartz is highlighted by a thick black line. </div>

<div>That between quartz and K-feldspar has no line (low relief).</div>

<p><span>EAE2522 1ba</span></p>

28
Q

<p><span>Thin Section Petrology</span></p>

<p><strong><span>Colour</span></strong></p>

<p>4 points.</p>

A

<ul> <li>Colour of the mineral in PPL</li> <li>The large biotite grain at the centre is brown to cream in colour. It contains dark spherical spots = radiation damage from tiny zircons. </li> <li>The other minerals are colourless except for opaque oxides. </li> <li>Some minerals do not transmit PPL - they appear <strong>black </strong>and are called <strong>OPAQUE </strong>minerals. Iron oxides and sulfide minerals are opaque.</li></ul>

<p><span>EAE2522 1bb</span></p>

29
Q

<p><span>Thin Section Petrology</span></p>

<p><strong><span>Pleochroism</span></strong></p>

A

Pleochroism is present if the colour of a mineral changes upon rotation of the sample. For pleochroic minerals, you should describe the change in colour upon rotation of the stage in PPL.<p style="text-align:right;"><span>EAE2522 1bc</span></p>

30
Q

<p><span>Minerals in Cross Polarised Light (XPL)</span></p>

<p><strong><span>Birefrigence ("double refraction")</span></strong></p>

<p>3 points.</p>

A

<p><span>Anisotropic minerals have different refractive indices in different directions (fast and slow)</span></p>

<ul> <li>Light is polarized into two different directions</li> <li>Light is split into two different speeds (rays)</li> <li>In cross polars these light waves interfere to make <em>interference colours</em> </li></ul>

<div></div>

Isotropic minerals (e.g., glass, garnet) are black in XPL!<p style="text-align:right;"><span>EAE2522 1bd</span></p>

31
Q

<p><span>Minerals in Cross Polarised Light (XPL)</span></p>

<p><strong><span>Twinning</span></strong></p>

<p>3 points.</p>

A

<p><span>Some crystals are made up of twins = differently oriented parts or layers </span></p>

<div>Diagnostic of feldspars </div>

<ul> <li>K-feldpars - simple or Carlsbad twins </li> <li>Microcline - cross hatch (tartan) twins </li> <li>Plagioclases - multiple or polysynthetic twins</li></ul>

<p><span>EAE2522 1be</span></p>

32
Q

<p><span>Minerals in Cross Polarised Light (XPL)</span></p>

<p><strong><span>Twinning</span></strong></p>

<p>3 points.</p>

A

<p><span>When anisotropic minerals are rotated on XPL there will be a position where they become black</span></p>

<div>For minerals with cleavage or twins, the angle between the cleavage or twins and the extinction position is the <strong>extinction angle </strong></div>

<div>This is measured by</div>

<ol> <li>lining the cleavage up the the N-S microscope axis</li> <li>rotate to the extinction position</li> <li>measure the angle of the microscope stage</li></ol>

<p><span>EAE2522 1bf</span></p>