Distributions Flashcards
Sampling distribution (Rozkład próbkowania)
Distribution of statistic estimates we would see if we selected many random samples using same sampling design, and computed an estimate from each.
Central Limit Theorem: CLT (Centralne twierdzenie graniczne)
With large enough probability sample size, sampling distribution of estimates will look like a normal distribution, regardless of what estimates are being computed.
z-score
A z-score measures exactly how many standard deviations above or below the mean a data point is, assuming normal distribution.
Density Curve (Funkcja gęstości prawdopodobieństwa)
If you draw relative frequency historgram of probability distribution with very small bins, the tops will form a density curve.
Nieujemna funkcja rzeczywista, określona dla rozkładu prawdopodobieństwa, taka że całka z tej funkcji, obliczona w odpowiednich granicach, jest równa prawdopodobieństwu wystąpienia danego zdarzenia losowego
Random Variables (Zmienna losowa)
Variable whose values depend on outcomes of a random phenomenon.
Probability Distribution (Rozkład prawdopodobieństwa)
- Function P(X) = Y
- Probability distributions describe the probability of all possible outcomes of a given variable.
Expected Value (Wartość oczekiwana)
The mean of a probability distribution.
Expected value uses probability to tell us what outcomes to expect in the long run.
Coin flip example: 0.5
Probability distribution Variance
Var = (xi - E(X))^2 * P(xi) for all xi
STD = sqrt(Var)
How addition to random variable changes mean and variance? (i.e. X + k)
Sum changes variable mean (mean + k) but does NOT change standard deviation/variance.
How multiplication of k and random variable changes mean and variance? (i.e. X * k)
Multiplication changes variable mean (mean * k) AND standard deviation/variance (k * STD)
When can we combine random variables?
Make sure that the variables are independent or that it’s reasonable to assume independence, before combining variances.
Mean (m) and Variance (v) of E(X + Y)
m = mX + mY, v = vX + vY
Mean (m) and Variance (v) of E(X - Y)
m = mX - mY, v = vX + vY
standard error
the standard deviation of a sampling distribution
What is CDF function
- Cumulative Distribution Function (CDF)
- Example: the probability of our IQ (which is the random variable X) being less than or equal to 120 (i.e. P(X ≤ 120) can be determined using the CDF.
- It gives the probability of finding the random variable at a value less than or equal to a given cutoff, ie, P(X ≤ x).