Distributions Flashcards
Exponential Distribution PDF
f(x,λ) = λe^(-λx), x≥0
Exponential Distribution CDF
F(x, λ) = 1 - e^(-λx), x≥0
What transformation makes a Gamma distribution?
The sum of n X~EXP(β) ~GAM(n,β)
What form of Gamma follows a Chi-Square Distribution?
X~GAM(k/2, 2) <=> X~χ(dof = k)
What is the distribution of the sum of a Gamma function GAM(α(i), β)?
ΣX(i) ~ GAM(α(1) + α(2) + … + α(n), β)
X(1) ~GAM(α(1), β
X(2) ~GAM(α(2), β
What is distribution of X(1)/(X(1) + X(2))?
Beta(α(1), α(2))
Normal Distribution PDF
f(x, µ, σ) = 1/sqrt(2πσ^2)e^(-0.5((x-µ)/σ)^2)
Uniform Distribution PDF
f(x) = 1/(b-a) , x∈[a,b]
Uniform Distribution CDF
F(x) = (x-a)/(b-a), x∈[a,b]
Y = X1^2 + … +Xk^2, Xi~N(0,1)
Y~GAM(k/2, 2) = chi-square(k)
X~N(mu, sigma^2)
e^X?
~logN(mu, sigma^2)
X~N(0,1)
Y~chi-square(k)
X/sqrt(Y/k)
t(k)
F-distribution from other r.v.
(Z1/k1)/(Z2/k2)
Z1~chi-square(k1)
Z2~chi-square(k2)