discrete mathematics Flashcards

1
Q

Discrete mathematics ?

A

Les mathématiques discrètes, parfois appelées mathématiques finies, sont l’étude des structures mathématiques fondamentalement discrètes, dans le sens où la notion de continuité n’est pas exigée ou supportée. La plupart des objets étudiés en mathématiques discrètes, si ce n’est pas la totalité, sont des ensembles dénombrables comme celui des entiers.
Les mathématiques discrètes sont devenues populaires ces dernières décennies du fait de leurs applications dans l’informatique. Les notations et les concepts des mathématiques discrètes sont utilisés pour exprimer ou étudier des problèmes et des objets en algorithmique et en programmation.

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
2
Q

conjunction of p and q

A

p and q

p ∧ q

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
3
Q

disjunction of p and q

A

p or q

p ∨ q

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
4
Q

Students who have taken calculus or computer science can take this class

A

inclusive or

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
5
Q

Students who have taken calculus or computer science, but not both, can enroll in this
class

A

exclusive or

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
6
Q

quel est le “converse” de p → q

A

q → p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
7
Q

quel est le “contrapositive” de p → q

A

¬q →¬p

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
8
Q

quel est le “inverse” de p → q

A

¬p →¬q

How well did you know this?
1
Not at all
2
3
4
5
Perfectly
9
Q

variety of terminology is used to express p → q

A
“if p, then q” 
“if p, q”
“p is sufficient for q”
“q if p”
“q when p”
“a necessary condition for p is q”
“q unless ¬p”
“p implies q”
“p only if q”
“a sufficient condition for q is p”
“q whenever p”
“q is necessary for p”
“q follows from p”
How well did you know this?
1
Not at all
2
3
4
5
Perfectly
10
Q

common ways to express p ↔ q

A

“if and only if”
“p is necessary and sufficient for q”
“if p then q, and conversely”

How well did you know this?
1
Not at all
2
3
4
5
Perfectly