Direction Cosines And Direction Ratios Of A Line Flashcards
if a directed line L passing through the origin makes angles a, b and g with x, y and z-axes, respectively, called direction angles then
cosine
of these angles, namely, cos a, cos b and cos g are called direction cosines of the
directedline L.
If we reverse the direction of L by 180° then
Direction cosines are pi-a,pi-b,pi-g
Numbers which are proportional to the direction cosines of a line are called
Direction ratios a,b,c
If direction cosines cos a=l cos b=m cos g=n and direction ratios a,b,c then
a=ñl b=ñm c=ñn
If l,m,n are direction cosines and a,b,c are direction ratios then
l/a=m/b=n/c=k(constant)
k=+_l/sqrt a^2+b^2+c^2
dc’s of a line are
l=+_a/sqrt a^2+b^2+c^2
m=+_b/sqrt a^2+b^2+c^2
n=+_c/sqrt a^2+b^2+c^2
For any line there are infinitely many
Sets of direction ratios
any two sets of direction ratios of a line are also
Proportional
For any line, if a, b, c are direction ratios of a line, then ka, kb, kc; k ≠ 0 is also a set of direction ratios.