Differentiation/Integration Flashcards
Reciprocal Identity
1
cos
sec
Pythagorean Identity
1+cot^2=
csc^2
cosacosb+sinasinb
cos(a-b)
Pythagorean Identity
sec^2
1+tan^2=sec^2
∫ cscxcotx dx
-cscx + C
∫secx dx
ln Isecx + tanxI + C
Pythagorean Identity
sin and cos
sin^2+cos^2=1
∫ x^n dx
x^(n+1) / n+1 (n cannot =-1)
sinacosb+cosasinb
sin(a+b)
∫ e^x dx
e^x + C
d/dx (lnx)
1/x
Pythagorean Identity
cot and csc
1+cot^2=csc^2
Pythagorean Identity
csc^2
1+cot^2=csc^2
d/dx (cotx)
-csc²x
∫ 1/x dx
ln |x| + C
cos(a+b)
cosacosb-sinasinb
∫ sec²x dx
tanx + C
sinacosb-cosasinb
sin(a-b)
∫ secxtanx dx
secx + C
d/dx (cscx)
-cscxcotx
d/dx (x^n)
nx^n-1
Pythagorean Identity
tan and secant
1+tan^2=sec^2
∫ 1 dx
xlnx
ln I lnx I + C
n
Σi2
i=1
n(n+1)(2n+1)
6
Pythagorean Identity
sin^2+cos^2=
1
d/dx (sinx)
cosx
sin(a+b)
sinacosb+cosasinb
d/dx (secx)
secxtanx
Reciprocal Identities
Cot
1
tan
n
Σi
i=1
n(n+1)
2
∫ xsinx dx
sinx - xcosx + C