Differentiation/Integration Flashcards
Reciprocal Identity
1
cos
sec
Pythagorean Identity
1+cot^2=
csc^2
cosacosb+sinasinb
cos(a-b)
Pythagorean Identity
sec^2
1+tan^2=sec^2
∫ cscxcotx dx
-cscx + C
∫secx dx
ln Isecx + tanxI + C
Pythagorean Identity
sin and cos
sin^2+cos^2=1
∫ x^n dx
x^(n+1) / n+1 (n cannot =-1)
sinacosb+cosasinb
sin(a+b)
∫ e^x dx
e^x + C
d/dx (lnx)
1/x
Pythagorean Identity
cot and csc
1+cot^2=csc^2
Pythagorean Identity
csc^2
1+cot^2=csc^2
d/dx (cotx)
-csc²x
∫ 1/x dx
ln |x| + C
cos(a+b)
cosacosb-sinasinb
∫ sec²x dx
tanx + C
sinacosb-cosasinb
sin(a-b)
∫ secxtanx dx
secx + C
d/dx (cscx)
-cscxcotx
d/dx (x^n)
nx^n-1
Pythagorean Identity
tan and secant
1+tan^2=sec^2
∫ 1 dx
xlnx
ln I lnx I + C
n
Σi2
i=1
n(n+1)(2n+1)
6
Pythagorean Identity
sin^2+cos^2=
1
d/dx (sinx)
cosx
sin(a+b)
sinacosb+cosasinb
d/dx (secx)
secxtanx
Reciprocal Identities
Cot
1
tan
n
Σi
i=1
n(n+1)
2
∫ xsinx dx
sinx - xcosx + C
∫ xex dx
(x-1)ex + C
n
Σi3
i=1
n2(n+1)2
4
d/dx (x)
1
∫ a dx
ax + C
n
Σc
i=1
cn
∫ tanx dx
-ln Icos xI + C
∫cot2x dx
-cotx - x + C
d/dx (ax)
a
Reciprocal Identity
csc
1
sin
d/dx (cosx)
-sinx
∫ 1 dx
x + C
∫ a^x dx
a^x / lna +c (a>0, a cannot =1)
∫ln x dx
x ln x - x + C
∫ xcosx dx
cosx + xsinx + C
∫ csc²x dx
-cotx + C
∫ sinx dx
-cosx + C
∫ cosx dx
sinx + C
tan identity
sin
cos
sin(a-b)
sinacosb-cosasinb
cos(a-b)
cosacosb+sinasinb
d/dx (e^x)
e^x
Reciprocal Identity
1
sin
csc
tana+tanb
1-tanatanb
tan(a+b)
tan(a-b)
tana-tanb
1+tanatanb
Pythagorean Identity
1
sin^2+cos^2=1
Reciprocal Identities
sec
1
cos
Reciprocol Identity
1
tan
cot
Pythagorean Identity
1+tan^2=
sec^2
∫tan2x dx
tanx - x + C
∫cscx dx
-ln Icscx + cotxI + C
∫cotx dx
ln IsinxI + C
d/dx (tanx)
sec²x
cosacosb-sinasinb
cos(a+b)
tan(a+b)
tana+tanb
1-tanatanb
cot identity
cos
sin
∫sin2x dx
x -sin(2x)
2 4
∫cos2x dx
x + sin(2x) + C
2 4
∫ 1 dx
(a2-x2)½
arcsin x + C
a
∫ 1 dx
a2+x2
1 arctan x + C
a a
Trigonometric Substitution
(a²-x²)½
x=asinØ
1-sin2Ø=cos2Ø
Trigonometric Subistution
(a2+x2)½
x=atanØ
1 + tan2Ø = sec2Ø
Trigonometric Substitution
(x2-a2)½
x = asecØ
sec2Ø - 1 = tan2Ø
Double Angle Identity
sin2x
2sinxcosx
Double Angle Identity
cos2x
cos2x - sin2x
or
1 - 2sin2x
or
2cos2x - 1
Double Angle Identity
tan2x
2tanx
1 - tan2x
Half Angle Identity
sin2x
or
sin x
2
1 - cos2x
2
Half Angle Identity
cos2x
or
cosx
2
1 + cos2x
2
Half Angle Identity
tanx
2
sinx
1 + cosx
or
1 - cosx
sinx