Differentiate Rules Flashcards
Constant Rule: d/dx [C]
0
Power Rule: d/dx [x^(n)]
nx^(n-1)
Product Rule: d/dx [f(x)g(x)]
d/dx [f(x)] (g(x)) + d/dx [g(x)] (f(x))
Quotient Rule: d/dx [f(x)/g(x)]
(d/dx [f(x)] (g(x)) - f(x) (d/dx [g(x)]) / (g(x))^2
Exponential Rule: d/dx [e^(x)]
e^x
lim (sin(x))/(x)=?
x->0
1
lim (cos(x)-1)/(x)=?
x->0
0
Trig Function: d/dx [sin(x)]
cos(x)
Trig Function: d/dx [cos(x)]
-sin(x)
Trig Function: d/dx [tan(x)]
(sec(x))^2
Trig Function: d/dx [csc(x)]
(-csc(x))(cot(x))
Trig Function: d/dx [sec(x)]
(sec(x))(tan(x))
Trig Function: d/dx [cot(x)]
(-csc(x))^2
Log Function: d/dx [log_(a) (X)]
1/(x)(ln (a))
Log Function: d/dx [ln (x)], where x>0
1/x
Exponential Function: d/dx [a^(x)], where “a” is a base number
(a^(x))(ln(a))
Inverse Trig Function: d/dx [(sin(x))^(-1)]
1/(1-x^(2))^(1/2)
Inverse Trig Function: d/dx [(cos(x))^(-1)]
-1/(1-x^(2))^(1/2)
Inverse Trig Function: d/dx [(tan(x))^(-1)]
1/(1+x^(2))
Inverse Trig Function: d/dx [(cot(x))^(-1)]
-1/(1+x^(2))
Inverse Trig Function: d/dx [(sec(x))^(-1)]
1/(x)(x^(2)-(1))^(1/2)
Inverse Trig Function: d/dx [(csc(x))^(-1)]
-1/(x)(x^(2)-(1))^(1/2)