Differential Forms Flashcards
alternating (multilinear form)
α(v_1,…,v_k)=0 whenever v_i=v_j
degree of α
k
σ*α
α(v_σ(1),…,v_σ(k))
alt(α)
Σ (over σ) sgn(σ) σ*α
α_1…α_k
α_1(v_1)…α_k (v_k)
α_1 ^…^ α_k
alt(α_1…α_k)
Smooth differential k-form
smooth function from U to Alt^k (RR^n) sending p to α_p
φ*α
α(φ(v_1), … , φ(v_k))
pullback
(Dφ_p)* α_φ(p)
exterior derivative
(dα)_p = 1/k! alt((Dα)_p^)
αβ(v_1,…,v_k+l)
α(v_1,…,v_k) β(v_k+1,…,v_k+l)
Poincare’s Lemma
closed α in Alt^k (RR^n) implies exact
α^β
1/k!l! alt(αβ)
wedge product
(α^β)_p = α_p ^ β_p
differential k-form on submanifold of dimension m
function α from M to A_m ^k (RR^s) st
α_p is in Alt^k (T_pM) for all p
for all p there is open nhbd U in RR^s st for all q in intersection of U with M
α_q= β_q restricted to T_qM^k